Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study
In this work, the tensile-shear mechanical behaviors of friction stir spot weld and adhesive hybrid joint were performed from both numerical and experimental viewpoints. Weld through (WT) and flow in (FI) processes were studied in this research. The focus was to evaluate joint defects, tensile-shear...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/10/8/1028 |
_version_ | 1797560649055731712 |
---|---|
author | Guishen Yu Xin Chen Biao Zhang Kaixuan Pan Lifei Yang |
author_facet | Guishen Yu Xin Chen Biao Zhang Kaixuan Pan Lifei Yang |
author_sort | Guishen Yu |
collection | DOAJ |
description | In this work, the tensile-shear mechanical behaviors of friction stir spot weld and adhesive hybrid joint were performed from both numerical and experimental viewpoints. Weld through (WT) and flow in (FI) processes were studied in this research. The focus was to evaluate joint defects, tensile-shear failure load (TSFL), failure energy, failure mode and stress distribution of the joint. In FI joints, keyhole and hook defects appeared in the weld zone and the areas of material removed from the base metal were filled with adhesive. In the WT joints, the adhesive layer close to the weld zone was carbonized due to the welding heat. Meanwhile, under the rotating movement of welding tool, the adhesive impurities entered the stirring zone (SZ) and heat affected zone (HAZ) of the weld, which decreased mechanical performances of WT joints. Compared to the friction stir spot welding (FSSW) joint, the TSFL value, stiffness and failure energy of FI joint were increased by 2.7, 1.1 and 8.14 times, respectively. In order to study the stress distribution of the joints, a finite element (FE) model, which considered the weld structure and mechanical properties of weld regions, was implemented. Moreover, the adhesive layer was simplified by the cohesive zone model (CZM). FE results show that the FI process effectively decreases the stress concentration of the weld edge from 243.09 to 15.5 MPa, under the 2 kN tensile load. The weld can block the adhesive crack propagation, and the adhesive optimized the stress distribution of FI joints through a synergistic effect. So, the use of FI process for aluminum alloy connection is strongly recommended, especially in crucial structure areas. |
first_indexed | 2024-03-10T18:03:36Z |
format | Article |
id | doaj.art-d73a38f147ac46b1be363b882a973d9e |
institution | Directory Open Access Journal |
issn | 2075-4701 |
language | English |
last_indexed | 2024-03-10T18:03:36Z |
publishDate | 2020-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Metals |
spelling | doaj.art-d73a38f147ac46b1be363b882a973d9e2023-11-20T08:43:53ZengMDPI AGMetals2075-47012020-07-01108102810.3390/met10081028Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical StudyGuishen Yu0Xin Chen1Biao Zhang2Kaixuan Pan3Lifei Yang4State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, ChinaState Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, ChinaState Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, ChinaState Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, ChinaState Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130022, ChinaIn this work, the tensile-shear mechanical behaviors of friction stir spot weld and adhesive hybrid joint were performed from both numerical and experimental viewpoints. Weld through (WT) and flow in (FI) processes were studied in this research. The focus was to evaluate joint defects, tensile-shear failure load (TSFL), failure energy, failure mode and stress distribution of the joint. In FI joints, keyhole and hook defects appeared in the weld zone and the areas of material removed from the base metal were filled with adhesive. In the WT joints, the adhesive layer close to the weld zone was carbonized due to the welding heat. Meanwhile, under the rotating movement of welding tool, the adhesive impurities entered the stirring zone (SZ) and heat affected zone (HAZ) of the weld, which decreased mechanical performances of WT joints. Compared to the friction stir spot welding (FSSW) joint, the TSFL value, stiffness and failure energy of FI joint were increased by 2.7, 1.1 and 8.14 times, respectively. In order to study the stress distribution of the joints, a finite element (FE) model, which considered the weld structure and mechanical properties of weld regions, was implemented. Moreover, the adhesive layer was simplified by the cohesive zone model (CZM). FE results show that the FI process effectively decreases the stress concentration of the weld edge from 243.09 to 15.5 MPa, under the 2 kN tensile load. The weld can block the adhesive crack propagation, and the adhesive optimized the stress distribution of FI joints through a synergistic effect. So, the use of FI process for aluminum alloy connection is strongly recommended, especially in crucial structure areas.https://www.mdpi.com/2075-4701/10/8/1028hybrid jointfriction stir spot weldingadhesive bondingtensile-shear failure loadfailure energyfailure mode |
spellingShingle | Guishen Yu Xin Chen Biao Zhang Kaixuan Pan Lifei Yang Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study Metals hybrid joint friction stir spot welding adhesive bonding tensile-shear failure load failure energy failure mode |
title | Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study |
title_full | Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study |
title_fullStr | Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study |
title_full_unstemmed | Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study |
title_short | Tensile-Shear Mechanical Behaviors of Friction Stir Spot Weld and Adhesive Hybrid Joint: Experimental and Numerical Study |
title_sort | tensile shear mechanical behaviors of friction stir spot weld and adhesive hybrid joint experimental and numerical study |
topic | hybrid joint friction stir spot welding adhesive bonding tensile-shear failure load failure energy failure mode |
url | https://www.mdpi.com/2075-4701/10/8/1028 |
work_keys_str_mv | AT guishenyu tensileshearmechanicalbehaviorsoffrictionstirspotweldandadhesivehybridjointexperimentalandnumericalstudy AT xinchen tensileshearmechanicalbehaviorsoffrictionstirspotweldandadhesivehybridjointexperimentalandnumericalstudy AT biaozhang tensileshearmechanicalbehaviorsoffrictionstirspotweldandadhesivehybridjointexperimentalandnumericalstudy AT kaixuanpan tensileshearmechanicalbehaviorsoffrictionstirspotweldandadhesivehybridjointexperimentalandnumericalstudy AT lifeiyang tensileshearmechanicalbehaviorsoffrictionstirspotweldandadhesivehybridjointexperimentalandnumericalstudy |