DNN-Based FES Control for Gait Rehabilitation of Hemiplegic Patients
In this study, we proposed a novel machine-learning-based functional electrical stimulation (FES) control algorithm to enhance gait rehabilitation in post-stroke hemiplegic patients. The electrical stimulation of the muscles on the paretic side was controlled via deep neural networks, which were tra...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/7/3163 |
Summary: | In this study, we proposed a novel machine-learning-based functional electrical stimulation (FES) control algorithm to enhance gait rehabilitation in post-stroke hemiplegic patients. The electrical stimulation of the muscles on the paretic side was controlled via deep neural networks, which were trained using muscle activity data from healthy people during gait. The performance of the developed system in comparison with that of a conventional FES control method was tested with healthy human subjects. |
---|---|
ISSN: | 2076-3417 |