An Improved Sub-Array Adaptive Beamforming Technique Based on Multiple Sources of Errors

In this paper, a new robust adaptive beamforming method is proposed in order to improve the robustness against steering vector (SV) mismatches that arise from multiple types of array errors. First, the sub-array technique is applied in order to obtain the decoupled sample covariance matrix (DSCM), i...

Full description

Bibliographic Details
Main Authors: Zhuang Xie, Jiahua Zhu, Chongyi Fan, Xiaotao Huang
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/8/10/757
Description
Summary:In this paper, a new robust adaptive beamforming method is proposed in order to improve the robustness against steering vector (SV) mismatches that arise from multiple types of array errors. First, the sub-array technique is applied in order to obtain the decoupled sample covariance matrix (DSCM), in which the auxiliary sensors are selected to decouple the array. The decoupled interference-plus-noise covariance matrix (DINCM) is reconstructed with the estimated interference SV and maximum eigenvalue of the DSCM. Furthermore, the desired signal SV is estimated as the corresponding eigenvector determined by the correlation coefficients of the assumed SV and eigenvectors. Finally, the optimal weighting vector is obtained by combining the reconstructed DINCM and the estimated desired signal SV. Our simulation results show significant signal-to-interference-plus-noise ratio (SINR) enhancement of the proposed method over existing methods under multiple types of array errors.
ISSN:2077-1312