Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model

Some two-dimensional superconductors like, e.g., LaAlO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>/SrTiO<inline-formula> <...

Full description

Bibliographic Details
Main Authors: Giulia Venditti, Ilaria Maccari, Marco Grilli, Sergio Caprara
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Condensed Matter
Subjects:
Online Access:https://www.mdpi.com/2410-3896/5/2/36
_version_ 1797568057317523456
author Giulia Venditti
Ilaria Maccari
Marco Grilli
Sergio Caprara
author_facet Giulia Venditti
Ilaria Maccari
Marco Grilli
Sergio Caprara
author_sort Giulia Venditti
collection DOAJ
description Some two-dimensional superconductors like, e.g., LaAlO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>/SrTiO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> heterostructures or thin films of transition metal dichalcogenides, display peculiar properties that can be understood in terms of electron inhomogeneity at the nanoscale. In this framework, unusual features of the metal-superconductor transition have been interpreted as due to percolative effects within a network of superconducting regions embedded in a metallic matrix. In this work we use a mean-field-like effective medium approach to investigate the superconducting phase below the critical temperature <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> at which the resistivity vanishes. Specifically, we consider the finite frequency impedance of the system to extract the dissipative part of the conductance and the superfluid stiffness in the superconducting state. Intriguing effects arise from the metallic character of the embedding matrix: upon decreasing the temperature below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> proximity effects may rapidly increase the superfluid stiffness. Then, a rather fragile superconducting state, living on a filamentary network just below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, can be substantially consolidated by additional superconducting regions induced by proximity effect in the interstitial metallic regions. This mean-field prediction should call for further theoretical analyses and trigger experimental investigations of the superconducting properties of the above systems.
first_indexed 2024-03-10T19:50:58Z
format Article
id doaj.art-d74b54fc1358477fae7ab1c8d7c3d86a
institution Directory Open Access Journal
issn 2410-3896
language English
last_indexed 2024-03-10T19:50:58Z
publishDate 2020-05-01
publisher MDPI AG
record_format Article
series Condensed Matter
spelling doaj.art-d74b54fc1358477fae7ab1c8d7c3d86a2023-11-20T00:25:50ZengMDPI AGCondensed Matter2410-38962020-05-01523610.3390/condmat5020036Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance ModelGiulia Venditti0Ilaria Maccari1Marco Grilli2Sergio Caprara3Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, ItalyDipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, ItalyDipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, ItalyDipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Roma, ItalySome two-dimensional superconductors like, e.g., LaAlO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>/SrTiO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> heterostructures or thin films of transition metal dichalcogenides, display peculiar properties that can be understood in terms of electron inhomogeneity at the nanoscale. In this framework, unusual features of the metal-superconductor transition have been interpreted as due to percolative effects within a network of superconducting regions embedded in a metallic matrix. In this work we use a mean-field-like effective medium approach to investigate the superconducting phase below the critical temperature <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> at which the resistivity vanishes. Specifically, we consider the finite frequency impedance of the system to extract the dissipative part of the conductance and the superfluid stiffness in the superconducting state. Intriguing effects arise from the metallic character of the embedding matrix: upon decreasing the temperature below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> proximity effects may rapidly increase the superfluid stiffness. Then, a rather fragile superconducting state, living on a filamentary network just below <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, can be substantially consolidated by additional superconducting regions induced by proximity effect in the interstitial metallic regions. This mean-field prediction should call for further theoretical analyses and trigger experimental investigations of the superconducting properties of the above systems.https://www.mdpi.com/2410-3896/5/2/36inhomogeneous superconductivitynanoscale inhomogeneitypercolationoptical response of superconductorssuperfluid stiffness
spellingShingle Giulia Venditti
Ilaria Maccari
Marco Grilli
Sergio Caprara
Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model
Condensed Matter
inhomogeneous superconductivity
nanoscale inhomogeneity
percolation
optical response of superconductors
superfluid stiffness
title Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model
title_full Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model
title_fullStr Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model
title_full_unstemmed Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model
title_short Superfluid Properties of Superconductors with Disorder at the Nanoscale: A Random Impedance Model
title_sort superfluid properties of superconductors with disorder at the nanoscale a random impedance model
topic inhomogeneous superconductivity
nanoscale inhomogeneity
percolation
optical response of superconductors
superfluid stiffness
url https://www.mdpi.com/2410-3896/5/2/36
work_keys_str_mv AT giuliavenditti superfluidpropertiesofsuperconductorswithdisorderatthenanoscalearandomimpedancemodel
AT ilariamaccari superfluidpropertiesofsuperconductorswithdisorderatthenanoscalearandomimpedancemodel
AT marcogrilli superfluidpropertiesofsuperconductorswithdisorderatthenanoscalearandomimpedancemodel
AT sergiocaprara superfluidpropertiesofsuperconductorswithdisorderatthenanoscalearandomimpedancemodel