A new approach to the extragradient method for nonlinear variational inequalities

<p/> <p>The approximation-solvability of the following nonlinear variational inequality (NVI) problem is presented:</p> <p>Determine an element <inline-formula><graphic file="1029-242X-2000-158607-i1.gif"/></inline-formula> such that <inline-for...

Full description

Bibliographic Details
Main Author: Verma Ram U
Format: Article
Language:English
Published: SpringerOpen 2000-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/5/158607
_version_ 1811280505546473472
author Verma Ram U
author_facet Verma Ram U
author_sort Verma Ram U
collection DOAJ
description <p/> <p>The approximation-solvability of the following nonlinear variational inequality (NVI) problem is presented:</p> <p>Determine an element <inline-formula><graphic file="1029-242X-2000-158607-i1.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2000-158607-i2.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2000-158607-i3.gif"/></inline-formula> is a mapping from a nonempty closed convex subset <inline-formula><graphic file="1029-242X-2000-158607-i4.gif"/></inline-formula> of a real Hilbert space <inline-formula><graphic file="1029-242X-2000-158607-i5.gif"/></inline-formula> into <inline-formula><graphic file="1029-242X-2000-158607-i6.gif"/></inline-formula>. The iterative procedure is characterized as a nonlinear variational inequality (for any arbitrarily chosen initial point <inline-formula><graphic file="1029-242X-2000-158607-i7.gif"/></inline-formula>) <inline-formula><graphic file="1029-242X-2000-158607-i8.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2000-158607-i9.gif"/></inline-formula> which is equivalent to a double projection formula <inline-formula><graphic file="1029-242X-2000-158607-i10.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2000-158607-i11.gif"/></inline-formula> denotes the projection of <inline-formula><graphic file="1029-242X-2000-158607-i12.gif"/></inline-formula> onto <inline-formula><graphic file="1029-242X-2000-158607-i13.gif"/></inline-formula>.</p>
first_indexed 2024-04-13T01:15:59Z
format Article
id doaj.art-d750f82d38f64e849b9d5b4934d19f1d
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-04-13T01:15:59Z
publishDate 2000-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-d750f82d38f64e849b9d5b4934d19f1d2022-12-22T03:08:56ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2000-01-0120004158607A new approach to the extragradient method for nonlinear variational inequalitiesVerma Ram U<p/> <p>The approximation-solvability of the following nonlinear variational inequality (NVI) problem is presented:</p> <p>Determine an element <inline-formula><graphic file="1029-242X-2000-158607-i1.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2000-158607-i2.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2000-158607-i3.gif"/></inline-formula> is a mapping from a nonempty closed convex subset <inline-formula><graphic file="1029-242X-2000-158607-i4.gif"/></inline-formula> of a real Hilbert space <inline-formula><graphic file="1029-242X-2000-158607-i5.gif"/></inline-formula> into <inline-formula><graphic file="1029-242X-2000-158607-i6.gif"/></inline-formula>. The iterative procedure is characterized as a nonlinear variational inequality (for any arbitrarily chosen initial point <inline-formula><graphic file="1029-242X-2000-158607-i7.gif"/></inline-formula>) <inline-formula><graphic file="1029-242X-2000-158607-i8.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2000-158607-i9.gif"/></inline-formula> which is equivalent to a double projection formula <inline-formula><graphic file="1029-242X-2000-158607-i10.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2000-158607-i11.gif"/></inline-formula> denotes the projection of <inline-formula><graphic file="1029-242X-2000-158607-i12.gif"/></inline-formula> onto <inline-formula><graphic file="1029-242X-2000-158607-i13.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/5/158607Extragradient method<it>g</it>-&#945;-cocoercive mappingDouble projection equationNonlinear quasivariational inequalitiesIterative algorithmsExpanding mappings
spellingShingle Verma Ram U
A new approach to the extragradient method for nonlinear variational inequalities
Journal of Inequalities and Applications
Extragradient method
<it>g</it>-&#945;-cocoercive mapping
Double projection equation
Nonlinear quasivariational inequalities
Iterative algorithms
Expanding mappings
title A new approach to the extragradient method for nonlinear variational inequalities
title_full A new approach to the extragradient method for nonlinear variational inequalities
title_fullStr A new approach to the extragradient method for nonlinear variational inequalities
title_full_unstemmed A new approach to the extragradient method for nonlinear variational inequalities
title_short A new approach to the extragradient method for nonlinear variational inequalities
title_sort new approach to the extragradient method for nonlinear variational inequalities
topic Extragradient method
<it>g</it>-&#945;-cocoercive mapping
Double projection equation
Nonlinear quasivariational inequalities
Iterative algorithms
Expanding mappings
url http://www.journalofinequalitiesandapplications.com/content/5/158607
work_keys_str_mv AT vermaramu anewapproachtotheextragradientmethodfornonlinearvariationalinequalities
AT vermaramu newapproachtotheextragradientmethodfornonlinearvariationalinequalities