Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions

Recent advances in mathematical inequalities suggest that bounds of polynomial-exponential-type are appropriate for evaluating key trigonometric functions. In this paper, we innovate in this sense by establishing new and sharp bounds of the form <inline-formula><math xmlns="http://www....

Full description

Bibliographic Details
Main Authors: Yogesh J. Bagul, Ramkrishna M. Dhaigude, Marko Kostić, Christophe Chesneau
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/10/4/308
_version_ 1827674119227834368
author Yogesh J. Bagul
Ramkrishna M. Dhaigude
Marko Kostić
Christophe Chesneau
author_facet Yogesh J. Bagul
Ramkrishna M. Dhaigude
Marko Kostić
Christophe Chesneau
author_sort Yogesh J. Bagul
collection DOAJ
description Recent advances in mathematical inequalities suggest that bounds of polynomial-exponential-type are appropriate for evaluating key trigonometric functions. In this paper, we innovate in this sense by establishing new and sharp bounds of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><msup><mi>x</mi><mn>2</mn></msup><mo>)</mo></mrow><msup><mi>e</mi><mrow><mi>β</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></msup></mrow></semantics></math></inline-formula> for the trigonometric sinc and cosine functions. Our main result for the sinc function is a double inequality holding on the interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula>, while our main result for the cosine function is a double inequality holding on the interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>π</mi><mo>/</mo><mn>2</mn><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> Comparable sharp results for hyperbolic functions are also obtained. The proofs are based on series expansions, inequalities on the Bernoulli numbers, and the monotone form of the l’Hospital rule. Some comparable bounds of the literature are improved. Examples of application via integral techniques are given.
first_indexed 2024-03-10T04:35:08Z
format Article
id doaj.art-d75d7db5f3ec4ac488ec70d081e2cbf5
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T04:35:08Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-d75d7db5f3ec4ac488ec70d081e2cbf52023-11-23T03:49:52ZengMDPI AGAxioms2075-16802021-11-0110430810.3390/axioms10040308Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic FunctionsYogesh J. Bagul0Ramkrishna M. Dhaigude1Marko Kostić2Christophe Chesneau3Department of Mathematics, K. K. M. College, Manwath 431505, IndiaDepartment of Mathematics, Government Vidarbha Institute of Science and Humanities, Amravati 444604, IndiaFaculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, SerbiaDepartment of Mathematics, University of Caen-Normandie, 14032 Caen, FranceRecent advances in mathematical inequalities suggest that bounds of polynomial-exponential-type are appropriate for evaluating key trigonometric functions. In this paper, we innovate in this sense by establishing new and sharp bounds of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><msup><mi>x</mi><mn>2</mn></msup><mo>)</mo></mrow><msup><mi>e</mi><mrow><mi>β</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></msup></mrow></semantics></math></inline-formula> for the trigonometric sinc and cosine functions. Our main result for the sinc function is a double inequality holding on the interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>π</mi><mo>)</mo></mrow></semantics></math></inline-formula>, while our main result for the cosine function is a double inequality holding on the interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>π</mi><mo>/</mo><mn>2</mn><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> Comparable sharp results for hyperbolic functions are also obtained. The proofs are based on series expansions, inequalities on the Bernoulli numbers, and the monotone form of the l’Hospital rule. Some comparable bounds of the literature are improved. Examples of application via integral techniques are given.https://www.mdpi.com/2075-1680/10/4/308polynomial-exponential boundsl’Hôpital’s rule of monotonicityBernoulli numbersJordan’s inequalityKober’s inequalitytrigonometric functions
spellingShingle Yogesh J. Bagul
Ramkrishna M. Dhaigude
Marko Kostić
Christophe Chesneau
Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions
Axioms
polynomial-exponential bounds
l’Hôpital’s rule of monotonicity
Bernoulli numbers
Jordan’s inequality
Kober’s inequality
trigonometric functions
title Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions
title_full Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions
title_fullStr Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions
title_full_unstemmed Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions
title_short Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions
title_sort polynomial exponential bounds for some trigonometric and hyperbolic functions
topic polynomial-exponential bounds
l’Hôpital’s rule of monotonicity
Bernoulli numbers
Jordan’s inequality
Kober’s inequality
trigonometric functions
url https://www.mdpi.com/2075-1680/10/4/308
work_keys_str_mv AT yogeshjbagul polynomialexponentialboundsforsometrigonometricandhyperbolicfunctions
AT ramkrishnamdhaigude polynomialexponentialboundsforsometrigonometricandhyperbolicfunctions
AT markokostic polynomialexponentialboundsforsometrigonometricandhyperbolicfunctions
AT christophechesneau polynomialexponentialboundsforsometrigonometricandhyperbolicfunctions