On the number of series parallel and outerplanar graphs

We show that the number $g_n$ of labelled series-parallel graphs on $n$ vertices is asymptotically $g_n \sim g \cdot n^{-5/2} \gamma^n n!$, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random series-parallel graphs is asymptotically normal with linear...

Full description

Bibliographic Details
Main Authors: Manuel Bodirsky, Omer Gimenez, Mihyun Kang, Marc Noy
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2005-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3451/pdf
Description
Summary:We show that the number $g_n$ of labelled series-parallel graphs on $n$ vertices is asymptotically $g_n \sim g \cdot n^{-5/2} \gamma^n n!$, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random series-parallel graphs is asymptotically normal with linear mean and variance, and that the number of edges is sharply concentrated around its expected value. Similar results are proved for labelled outerplanar graphs.
ISSN:1365-8050