Axion-like particle searches at DarkQuest

Abstract Axion-like particles (ALPs) interacting with the Standard Model can be abundantly produced in proton beam fixed-target experiments. Looking for their displaced decays is therefore an effective search strategy for ALPs with a mass in the MeV to GeV range. Focusing on the benchmark models whe...

Full description

Bibliographic Details
Main Authors: Nikita Blinov, Elizabeth Kowalczyk, Margaret Wynne
Format: Article
Language:English
Published: SpringerOpen 2022-02-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP02(2022)036
Description
Summary:Abstract Axion-like particles (ALPs) interacting with the Standard Model can be abundantly produced in proton beam fixed-target experiments. Looking for their displaced decays is therefore an effective search strategy for ALPs with a mass in the MeV to GeV range. Focusing on the benchmark models where the ALP interacts dominantly with photons or gluons, we show that the proposed DarkQuest experiment at Fermilab will be able to test parameter space which has been previously inaccessible. We pay particular attention to the self-consistency of gluon-coupled ALP production and decay calculations, which has been recently shown to be a problem in many existing predictions. We also apply these results to explore existing constraints in the ALP parameter space.
ISSN:1029-8479