Optimization of Magnetoplasmonic <i>ε</i>-Near-Zero Nanostructures Using a Genetic Algorithm

Magnetoplasmonic permittivity-near-zero (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero) nanostructures hold promise for novel hi...

Full description

Bibliographic Details
Main Authors: Felipe A. P. de Figueiredo, Edwin Moncada-Villa, Jorge Ricardo Mejía-Salazar
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/15/5789
_version_ 1797432663638802432
author Felipe A. P. de Figueiredo
Edwin Moncada-Villa
Jorge Ricardo Mejía-Salazar
author_facet Felipe A. P. de Figueiredo
Edwin Moncada-Villa
Jorge Ricardo Mejía-Salazar
author_sort Felipe A. P. de Figueiredo
collection DOAJ
description Magnetoplasmonic permittivity-near-zero (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero) nanostructures hold promise for novel highly integrated (bio)sensing devices. These platforms merge the high-resolution sensing from the magnetoplasmonic approach with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero-based light-to-plasmon coupling (instead of conventional gratings or bulky prism couplers), providing a way for sensing devices with higher miniaturization levels. However, the applications are mostly hindered by tedious and time-consuming numerical analyses, due to the lack of an analytical relation for the phase-matching condition. There is, therefore, a need to develop mechanisms that enable the exploitation of magnetoplasmonic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero nanostructures’ capabilities. In this work, we developed a genetic algorithm (GA) for the rapid design (in a few minutes) of magnetoplasmonic nanostructures with optimized TMOKE (transverse magneto-optical Kerr effect) signals and magnetoplasmonic sensing. Importantly, to illustrate the power and simplicity of our approach, we designed a magnetoplasmonic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero sensing platform with a sensitivity higher than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>56</mn><mo>∘</mo></msup><mo>/</mo><mi>RIU</mi></mrow></semantics></math></inline-formula> and a figure of merit in the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>2</mn></msup></semantics></math></inline-formula>. These last results, higher than any previous magnetoplasmonic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero sensing approach, were obtained by the GA intelligent program in times ranging from 2 to 5 min (using a simple inexpensive dual-core CPU computer).
first_indexed 2024-03-09T10:05:52Z
format Article
id doaj.art-d7969dce4a7f46d7873290a71c364586
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T10:05:52Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-d7969dce4a7f46d7873290a71c3645862023-12-01T23:10:24ZengMDPI AGSensors1424-82202022-08-012215578910.3390/s22155789Optimization of Magnetoplasmonic <i>ε</i>-Near-Zero Nanostructures Using a Genetic AlgorithmFelipe A. P. de Figueiredo0Edwin Moncada-Villa1Jorge Ricardo Mejía-Salazar2Instituto Nacional de Telecomunicações (Inatel), Santa Rita do Sapucaí 37540-000, BrazilEscuela de Física, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, ColombiaInstituto Nacional de Telecomunicações (Inatel), Santa Rita do Sapucaí 37540-000, BrazilMagnetoplasmonic permittivity-near-zero (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero) nanostructures hold promise for novel highly integrated (bio)sensing devices. These platforms merge the high-resolution sensing from the magnetoplasmonic approach with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero-based light-to-plasmon coupling (instead of conventional gratings or bulky prism couplers), providing a way for sensing devices with higher miniaturization levels. However, the applications are mostly hindered by tedious and time-consuming numerical analyses, due to the lack of an analytical relation for the phase-matching condition. There is, therefore, a need to develop mechanisms that enable the exploitation of magnetoplasmonic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero nanostructures’ capabilities. In this work, we developed a genetic algorithm (GA) for the rapid design (in a few minutes) of magnetoplasmonic nanostructures with optimized TMOKE (transverse magneto-optical Kerr effect) signals and magnetoplasmonic sensing. Importantly, to illustrate the power and simplicity of our approach, we designed a magnetoplasmonic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero sensing platform with a sensitivity higher than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>56</mn><mo>∘</mo></msup><mo>/</mo><mi>RIU</mi></mrow></semantics></math></inline-formula> and a figure of merit in the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>2</mn></msup></semantics></math></inline-formula>. These last results, higher than any previous magnetoplasmonic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>-near-zero sensing approach, were obtained by the GA intelligent program in times ranging from 2 to 5 min (using a simple inexpensive dual-core CPU computer).https://www.mdpi.com/1424-8220/22/15/5789genetic algorithm optimizationmagnetoplasmonicsmagneto-opticssensingTMOKE
spellingShingle Felipe A. P. de Figueiredo
Edwin Moncada-Villa
Jorge Ricardo Mejía-Salazar
Optimization of Magnetoplasmonic <i>ε</i>-Near-Zero Nanostructures Using a Genetic Algorithm
Sensors
genetic algorithm optimization
magnetoplasmonics
magneto-optics
sensing
TMOKE
title Optimization of Magnetoplasmonic <i>ε</i>-Near-Zero Nanostructures Using a Genetic Algorithm
title_full Optimization of Magnetoplasmonic <i>ε</i>-Near-Zero Nanostructures Using a Genetic Algorithm
title_fullStr Optimization of Magnetoplasmonic <i>ε</i>-Near-Zero Nanostructures Using a Genetic Algorithm
title_full_unstemmed Optimization of Magnetoplasmonic <i>ε</i>-Near-Zero Nanostructures Using a Genetic Algorithm
title_short Optimization of Magnetoplasmonic <i>ε</i>-Near-Zero Nanostructures Using a Genetic Algorithm
title_sort optimization of magnetoplasmonic i ε i near zero nanostructures using a genetic algorithm
topic genetic algorithm optimization
magnetoplasmonics
magneto-optics
sensing
TMOKE
url https://www.mdpi.com/1424-8220/22/15/5789
work_keys_str_mv AT felipeapdefigueiredo optimizationofmagnetoplasmonicieinearzeronanostructuresusingageneticalgorithm
AT edwinmoncadavilla optimizationofmagnetoplasmonicieinearzeronanostructuresusingageneticalgorithm
AT jorgericardomejiasalazar optimizationofmagnetoplasmonicieinearzeronanostructuresusingageneticalgorithm