A novel approach to interface high-Q Fabry–Pérot resonators with photonic circuits

The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next-generation communications, computation, and...

Full description

Bibliographic Details
Main Authors: Haotian Cheng, Naijun Jin, Zhaowei Dai, Chao Xiang, Joel Guo, Yishu Zhou, Scott A. Diddams, Franklyn Quinlan, John Bowers, Owen Miller, Peter Rakich
Format: Article
Language:English
Published: AIP Publishing LLC 2023-11-01
Series:APL Photonics
Online Access:http://dx.doi.org/10.1063/5.0174384
Description
Summary:The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next-generation communications, computation, and time-keeping systems, it will be necessary to develop strategies to integrate compact Fabry–Pérot resonators with photonic integrated circuits. In this paper, we demonstrate a novel reflection cancellation circuit that utilizes a numerically optimized multi-port polarization-splitting grating coupler to efficiently interface high-finesse Fabry–Pérot resonators with a silicon photonic circuit. This circuit interface produces a spatial separation of the incident and reflected waves, as required for on-chip Pound–Drever–Hall frequency locking, while also suppressing unwanted back reflections from the Fabry–Pérot resonator. Using inverse design principles, we design and fabricate a polarization-splitting grating coupler that achieves 55% coupling efficiency. This design realizes an insertion loss of 5.8 dB for the circuit interface and more than 9 dB of back reflection suppression, and we demonstrate the versatility of this system by using it to interface several reflective off-chip devices.
ISSN:2378-0967