Multiobjective Hyperparameter Optimization of Artificial Neural Networks for Optimal Feedforward Torque Control of Synchronous Machines

Multiobjective hyperparameter optimization is applied to find optimal artificial neural network (ANN) architectures used for optimal feedforward torque control (OFTC) of synchronous machines. The proposed framework allows to systematically identify Pareto optimal ANNs with respect to multiple (partl...

Full description

Bibliographic Details
Main Authors: Niklas Monzen, Florian Stroebl, Herbert Palm, Christoph M. Hackl
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of the Industrial Electronics Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10411011/
_version_ 1797321059438952448
author Niklas Monzen
Florian Stroebl
Herbert Palm
Christoph M. Hackl
author_facet Niklas Monzen
Florian Stroebl
Herbert Palm
Christoph M. Hackl
author_sort Niklas Monzen
collection DOAJ
description Multiobjective hyperparameter optimization is applied to find optimal artificial neural network (ANN) architectures used for optimal feedforward torque control (OFTC) of synchronous machines. The proposed framework allows to systematically identify Pareto optimal ANNs with respect to multiple (partly) contradictory objectives, such as approximation accuracy and computational burden of the considered ANNs. The obtained Pareto optimal ANNs are trained and implemented on a realtime system and tested experimentally for a nonlinear reluctance synchronous machine against non-Pareto optimal ANN designs and a state-of-the-art OFTC approach. Finally, based on the most recent results from ANN approximation theory, guidelines for Pareto optimal ANN-based OFTC design and implementation are provided.
first_indexed 2024-03-08T04:52:58Z
format Article
id doaj.art-d7a1046175e44ea795ffe262337b3597
institution Directory Open Access Journal
issn 2644-1284
language English
last_indexed 2024-03-08T04:52:58Z
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of the Industrial Electronics Society
spelling doaj.art-d7a1046175e44ea795ffe262337b35972024-02-08T00:02:23ZengIEEEIEEE Open Journal of the Industrial Electronics Society2644-12842024-01-015415310.1109/OJIES.2024.335672110411011Multiobjective Hyperparameter Optimization of Artificial Neural Networks for Optimal Feedforward Torque Control of Synchronous MachinesNiklas Monzen0https://orcid.org/0000-0003-4818-7815Florian Stroebl1https://orcid.org/0000-0002-9468-1956Herbert Palm2https://orcid.org/0000-0003-4721-1414Christoph M. Hackl3https://orcid.org/0000-0001-5829-6818Institute for Sustainable Energy Systems (ISES), Hochschule München University of Applied Sciences, Munich, GermanyInstitute for Sustainable Energy Systems (ISES), Hochschule München University of Applied Sciences, Munich, GermanyInstitute for Sustainable Energy Systems (ISES), Hochschule München University of Applied Sciences, Munich, GermanyInstitute for Sustainable Energy Systems (ISES), Hochschule München University of Applied Sciences, Munich, GermanyMultiobjective hyperparameter optimization is applied to find optimal artificial neural network (ANN) architectures used for optimal feedforward torque control (OFTC) of synchronous machines. The proposed framework allows to systematically identify Pareto optimal ANNs with respect to multiple (partly) contradictory objectives, such as approximation accuracy and computational burden of the considered ANNs. The obtained Pareto optimal ANNs are trained and implemented on a realtime system and tested experimentally for a nonlinear reluctance synchronous machine against non-Pareto optimal ANN designs and a state-of-the-art OFTC approach. Finally, based on the most recent results from ANN approximation theory, guidelines for Pareto optimal ANN-based OFTC design and implementation are provided.https://ieeexplore.ieee.org/document/10411011/Artificial neural network (ANN)hyperspace exploration (HSE)multiobjective hyperparameter optimization (MO-HPO)optimal feedforward torque control (OFTC)reluctance synchronous machine (RSM)
spellingShingle Niklas Monzen
Florian Stroebl
Herbert Palm
Christoph M. Hackl
Multiobjective Hyperparameter Optimization of Artificial Neural Networks for Optimal Feedforward Torque Control of Synchronous Machines
IEEE Open Journal of the Industrial Electronics Society
Artificial neural network (ANN)
hyperspace exploration (HSE)
multiobjective hyperparameter optimization (MO-HPO)
optimal feedforward torque control (OFTC)
reluctance synchronous machine (RSM)
title Multiobjective Hyperparameter Optimization of Artificial Neural Networks for Optimal Feedforward Torque Control of Synchronous Machines
title_full Multiobjective Hyperparameter Optimization of Artificial Neural Networks for Optimal Feedforward Torque Control of Synchronous Machines
title_fullStr Multiobjective Hyperparameter Optimization of Artificial Neural Networks for Optimal Feedforward Torque Control of Synchronous Machines
title_full_unstemmed Multiobjective Hyperparameter Optimization of Artificial Neural Networks for Optimal Feedforward Torque Control of Synchronous Machines
title_short Multiobjective Hyperparameter Optimization of Artificial Neural Networks for Optimal Feedforward Torque Control of Synchronous Machines
title_sort multiobjective hyperparameter optimization of artificial neural networks for optimal feedforward torque control of synchronous machines
topic Artificial neural network (ANN)
hyperspace exploration (HSE)
multiobjective hyperparameter optimization (MO-HPO)
optimal feedforward torque control (OFTC)
reluctance synchronous machine (RSM)
url https://ieeexplore.ieee.org/document/10411011/
work_keys_str_mv AT niklasmonzen multiobjectivehyperparameteroptimizationofartificialneuralnetworksforoptimalfeedforwardtorquecontrolofsynchronousmachines
AT florianstroebl multiobjectivehyperparameteroptimizationofartificialneuralnetworksforoptimalfeedforwardtorquecontrolofsynchronousmachines
AT herbertpalm multiobjectivehyperparameteroptimizationofartificialneuralnetworksforoptimalfeedforwardtorquecontrolofsynchronousmachines
AT christophmhackl multiobjectivehyperparameteroptimizationofartificialneuralnetworksforoptimalfeedforwardtorquecontrolofsynchronousmachines