Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy

Abstract Background The Scalidophora (Kinorhyncha, Loricifera and Priapulida) have an important phylogenetic position as early branching ecdysozoans, yet the architecture of their nervous organ systems is notably underinvestigated. Without such information, and in the absence of a stable phylogeneti...

Full description

Bibliographic Details
Main Authors: María Herranz, Brian S. Leander, Fernando Pardos, Michael J. Boyle
Format: Article
Language:English
Published: BMC 2019-04-01
Series:BMC Evolutionary Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12862-019-1405-4
_version_ 1818695212681134080
author María Herranz
Brian S. Leander
Fernando Pardos
Michael J. Boyle
author_facet María Herranz
Brian S. Leander
Fernando Pardos
Michael J. Boyle
author_sort María Herranz
collection DOAJ
description Abstract Background The Scalidophora (Kinorhyncha, Loricifera and Priapulida) have an important phylogenetic position as early branching ecdysozoans, yet the architecture of their nervous organ systems is notably underinvestigated. Without such information, and in the absence of a stable phylogenetic context, we are inhibited from producing adequate hypotheses about the evolution and diversification of ecdysozoan nervous systems. Here, we utilize confocal laser scanning microscopy to characterize serotonergic, tubulinergic and FMRFamidergic immunoreactivity patterns in a comparative neuroanatomical study with three species of Echinoderes, the most speciose, abundant and diverse genus within Kinorhyncha. Results Neuroanatomy in Echinoderes as revealed by acetylated α-tubulin immunoreactivity includes a circumpharyngeal brain and ten neurite bundles in the head region that converge into five longitudinal nerves within the trunk. The ventral nerve cord is ganglionated, emerging from the brain with two connectives that converge in trunk segments 2–3, and diverge again within segment 8. The longitudinal nerves and ventral nerve cord are connected by two transverse neurites in segments 2–9. Differences among species correlate with the number, position and innervation of cuticular structures along the body. Patterns of serotoninergic and FMRFamidergic immunoreactivity correlate with the position of the brain neuropil and the ventral nerve cord. Distinct serotonergic and FMRFamidergic somata are associated with the brain neuropil and specific trunk segments along the ventral nerve cord. Conclusions Neural architecture is highly conserved across all three species, suggesting that our results reveal a pattern that is common to more than 40% of the species within Kinorhyncha. The nervous system of Echinoderes is segmented along most of the trunk; however, posterior trunk segments exhibit modifications that are likely associated with sensorial, motor or reproductive functions. Although all kinorhynchs show some evidence of an externally segmented trunk, it is unclear whether external segmentation matches internal segmentation of nervous and muscular organ systems across Kinorhyncha, as we observed in Echinoderes. The neuroanatomical data provided in this study not only expand the limited knowledge on kinorhynch nervous systems but also establish a comparative morphological framework within Scalidophora that will support broader inferences about the evolution of neural architecture among the deepest branching lineages of the Ecdysozoa.
first_indexed 2024-12-17T13:41:53Z
format Article
id doaj.art-d7a818483384440695c2d116d063d40a
institution Directory Open Access Journal
issn 1471-2148
language English
last_indexed 2024-12-17T13:41:53Z
publishDate 2019-04-01
publisher BMC
record_format Article
series BMC Evolutionary Biology
spelling doaj.art-d7a818483384440695c2d116d063d40a2022-12-21T21:46:15ZengBMCBMC Evolutionary Biology1471-21482019-04-0119112010.1186/s12862-019-1405-4Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopyMaría Herranz0Brian S. Leander1Fernando Pardos2Michael J. Boyle3Departments of Zoology and Botany, University of British Columbia. Biodiversity Research CentreDepartments of Zoology and Botany, University of British Columbia. Biodiversity Research CentreDepartamento de Biodiversidad, Ecología y EvoluciónSmithsonian Institution, Smithsonian Marine Station at Fort PierceAbstract Background The Scalidophora (Kinorhyncha, Loricifera and Priapulida) have an important phylogenetic position as early branching ecdysozoans, yet the architecture of their nervous organ systems is notably underinvestigated. Without such information, and in the absence of a stable phylogenetic context, we are inhibited from producing adequate hypotheses about the evolution and diversification of ecdysozoan nervous systems. Here, we utilize confocal laser scanning microscopy to characterize serotonergic, tubulinergic and FMRFamidergic immunoreactivity patterns in a comparative neuroanatomical study with three species of Echinoderes, the most speciose, abundant and diverse genus within Kinorhyncha. Results Neuroanatomy in Echinoderes as revealed by acetylated α-tubulin immunoreactivity includes a circumpharyngeal brain and ten neurite bundles in the head region that converge into five longitudinal nerves within the trunk. The ventral nerve cord is ganglionated, emerging from the brain with two connectives that converge in trunk segments 2–3, and diverge again within segment 8. The longitudinal nerves and ventral nerve cord are connected by two transverse neurites in segments 2–9. Differences among species correlate with the number, position and innervation of cuticular structures along the body. Patterns of serotoninergic and FMRFamidergic immunoreactivity correlate with the position of the brain neuropil and the ventral nerve cord. Distinct serotonergic and FMRFamidergic somata are associated with the brain neuropil and specific trunk segments along the ventral nerve cord. Conclusions Neural architecture is highly conserved across all three species, suggesting that our results reveal a pattern that is common to more than 40% of the species within Kinorhyncha. The nervous system of Echinoderes is segmented along most of the trunk; however, posterior trunk segments exhibit modifications that are likely associated with sensorial, motor or reproductive functions. Although all kinorhynchs show some evidence of an externally segmented trunk, it is unclear whether external segmentation matches internal segmentation of nervous and muscular organ systems across Kinorhyncha, as we observed in Echinoderes. The neuroanatomical data provided in this study not only expand the limited knowledge on kinorhynch nervous systems but also establish a comparative morphological framework within Scalidophora that will support broader inferences about the evolution of neural architecture among the deepest branching lineages of the Ecdysozoa.http://link.springer.com/article/10.1186/s12862-019-1405-4EcdysozoaNervous systemNerve cordMorphologyScalidophoraSegmentation
spellingShingle María Herranz
Brian S. Leander
Fernando Pardos
Michael J. Boyle
Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy
BMC Evolutionary Biology
Ecdysozoa
Nervous system
Nerve cord
Morphology
Scalidophora
Segmentation
title Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy
title_full Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy
title_fullStr Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy
title_full_unstemmed Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy
title_short Neuroanatomy of mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy
title_sort neuroanatomy of mud dragons a comprehensive view of the nervous system in echinoderes kinorhyncha by confocal laser scanning microscopy
topic Ecdysozoa
Nervous system
Nerve cord
Morphology
Scalidophora
Segmentation
url http://link.springer.com/article/10.1186/s12862-019-1405-4
work_keys_str_mv AT mariaherranz neuroanatomyofmuddragonsacomprehensiveviewofthenervoussysteminechinodereskinorhynchabyconfocallaserscanningmicroscopy
AT briansleander neuroanatomyofmuddragonsacomprehensiveviewofthenervoussysteminechinodereskinorhynchabyconfocallaserscanningmicroscopy
AT fernandopardos neuroanatomyofmuddragonsacomprehensiveviewofthenervoussysteminechinodereskinorhynchabyconfocallaserscanningmicroscopy
AT michaeljboyle neuroanatomyofmuddragonsacomprehensiveviewofthenervoussysteminechinodereskinorhynchabyconfocallaserscanningmicroscopy