Summary: | A novel gill cell line from pearl gentian grouper (Epinephelus lanceolatus♂×Epinephelus fuscoguttatus♀, PGGG cell line) was established, its application in cadmium (Cd) toxicology was demonstrated in this study. Primary cultures and PGGG subcultures were carried out at 25 °C in Dulbecco’s Modified Eagle medium/F12 medium (1:1; pH 7.2) supplemented with 15% fetal bovine serum (FBS). Primary PGGG cells were spindle-shaped, proliferated into a confluent monolayer within two weeks and were continuously subcultured over passage 60. The growth of cells at passages 20, 40, and 60 was examined. Chromosome analysis revealed that the chromosomal number of normal PGGG cells was 48, but the number of cells with the normal chromosomes number decreased during the passaging process. Cadmium is one of the most toxic metals in aquatic systems and has been associated with multiple animal and human health problems. To interpret the cytotoxicity and related mechanisms of cadmium, PGGG cells were used as an in vitro model. After treatment with cadmium at concentrations ranging from 1 µM to 500 µM, PGGG cells demonstrated dose- and time-dependent cytotoxicity, manifested as morphological abnormalities and a viability decline. Further, it was found that the reactive oxygen species (ROS) and malondialdehyde (MDA) levels were elevated following cadmium exposure, and related genes involved in the antioxidant system, including those encoding catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and Kelch-like- ECH-associated protein 1 (Keap1), were regulated differently. In addition, PGGG cells treated with cadmium had the typical features associated with apoptosis, including phosphatidylserine (PS) externalization; upregulated expression of caspase-3, −8, and −9; and apoptotic body formation. In general, the PGGG cell line may serve as a useful tool for studying the toxic mechanisms of cadmium or other toxicants or for toxicity testing and environment monitoring.
|