On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>

In this paper a new kind of variable exponential fractional Sobolev spaces is introduced. For this kind of spaces, some basic properties, such as separability, reflexivity, strict convexity and denseness, are established. At last as an application the existence of solutions for so called s(·)-p(·)-...

Full description

Bibliographic Details
Main Authors: Haikun Liu, Yongqiang Fu
Format: Article
Language:English
Published: AIMS Press 2020-08-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020403/fulltext.html
_version_ 1819209143621255168
author Haikun Liu
Yongqiang Fu
author_facet Haikun Liu
Yongqiang Fu
author_sort Haikun Liu
collection DOAJ
description In this paper a new kind of variable exponential fractional Sobolev spaces is introduced. For this kind of spaces, some basic properties, such as separability, reflexivity, strict convexity and denseness, are established. At last as an application the existence of solutions for so called s(·)-p(·)- Laplacian equations is discussed.
first_indexed 2024-12-23T05:50:36Z
format Article
id doaj.art-d7ad98c85ac14361b4de3eb327b6ffdb
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-23T05:50:36Z
publishDate 2020-08-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-d7ad98c85ac14361b4de3eb327b6ffdb2022-12-21T17:57:58ZengAIMS PressAIMS Mathematics2473-69882020-08-01566261627610.3934/math.2020403On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>Haikun Liu0Yongqiang Fu1Departnent of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. ChinaDepartnent of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. ChinaIn this paper a new kind of variable exponential fractional Sobolev spaces is introduced. For this kind of spaces, some basic properties, such as separability, reflexivity, strict convexity and denseness, are established. At last as an application the existence of solutions for so called s(·)-p(·)- Laplacian equations is discussed.https://www.aimspress.com/article/10.3934/math.2020403/fulltext.htmlvariable exponentfractionalsobolev space
spellingShingle Haikun Liu
Yongqiang Fu
On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>
AIMS Mathematics
variable exponent
fractional
sobolev space
title On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>
title_full On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>
title_fullStr On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>
title_full_unstemmed On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>
title_short On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>
title_sort on the variable exponential fractional sobolev space em w em sup em s em · em p em · sup
topic variable exponent
fractional
sobolev space
url https://www.aimspress.com/article/10.3934/math.2020403/fulltext.html
work_keys_str_mv AT haikunliu onthevariableexponentialfractionalsobolevspaceemwemsupemsemempemsup
AT yongqiangfu onthevariableexponentialfractionalsobolevspaceemwemsupemsemempemsup