Object Association and Identification in Heterogeneous Sensors Environment
<p/> <p>An approach for dynamic object association and identification is proposed for heterogeneous sensor network consisting of visual and identification sensors. Visual sensors track objects by a 2D localization, and identification sensors (i.e., RFID system, fingerprint, or iris recog...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://asp.eurasipjournals.com/content/2010/591582 |
Summary: | <p/> <p>An approach for dynamic object association and identification is proposed for heterogeneous sensor network consisting of visual and identification sensors. Visual sensors track objects by a 2D localization, and identification sensors (i.e., RFID system, fingerprint, or iris recognition system) are incorporated into the system for object identification. This paper illustrates the feasibility and effectiveness of information association between the position of objects estimated by visual sensors and their simultaneous registration of multiple objects. The proposed approach utilizes the object dynamics of entering and leaving the coverage of identification sensors, where the location information of identification sensors and objects is available. We investigate necessary association conditions using set operations where the sets are defined by the dynamics of the objects. The coverage of identification sensor is approximately modeled by the maximum sensing coverage for a simple association strategy. The effect of the discrepancy between the actual and the approximated coverage is addressed in terms of the association performance. We also present a coverage adjustment scheme using the object dynamics for the association stability. Finally, the proposed method is evaluated with a realistic scenario. The simulation results demonstrate the stability of the proposed method against nonideal phenomena such as false detection, false tracking, and inaccurate coverage model.</p> |
---|---|
ISSN: | 1687-6172 1687-6180 |