Effectiveness of Power Electronic Controllers in Mitigating Acoustic Noise and Vibration in High-Rotor Pole SRMs

This paper presents a comparative evaluation of power electronic control approaches for vibro-acoustic noise reduction in High Rotor-Pole Switched Reluctance Machines (HR-SRM). It carries out a fundamental analysis of approaches that can be used to target acoustic noise and vibration reduction. Base...

Full description

Bibliographic Details
Main Authors: Ziyan Zhang, Selin Yaman, Mohamad Salameh, Suryadev Singh, Chengxiu Chen, Mahesh Krishnamurthy
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/3/702
Description
Summary:This paper presents a comparative evaluation of power electronic control approaches for vibro-acoustic noise reduction in High Rotor-Pole Switched Reluctance Machines (HR-SRM). It carries out a fundamental analysis of approaches that can be used to target acoustic noise and vibration reduction. Based on the comprehensive study, four candidates for control have been identified and applied to the HR-SRM drive to evaluate their effectiveness and identify challenges. These four methods include phase advancing, current shaping based on field reconstruction, and random hysteresis band with and without spectrum shaping. The theoretical background, implementation, and vibro-acoustic noise reduction performance of each method are presented in detail. Comparative studies from simulation and experimental measurements have been used to identify the most effective solution to acoustic noise and vibration reduction in HR-SRM configuration.
ISSN:1996-1073