Summary: | Abstract Background The present study was to determine the effect of local anti-RANKL antibody administration in the presence or absence of microRNA-146a on ligature-induced peri-implant bone resorption, and the potential role of TLR2/4 signaling in such effect. Results Titanium implants were placed in the left maxilla alveolar bone 6 weeks after extraction of first and second molars in C57/BL6 wild-type (WT) and TLR2−/− TLR4−/− (TLR2/4 KO) mice. Silk ligatures were tied around the implants 4 weeks after implantation. Anti-RANKL antibody (500 μg/mL) with or without microRNA 146a (miR-146a) (100 nM) was injected into palatal gingiva around implant on days 3, 6, and 9 during 2 weeks of ligation period. Bone resorption around the implants was assessed by 2D imaging using area measurement and 3D imaging using micro-computed tomography (μCT). Real-time quantitative PCR (RT-qPCR) was used to determine the peri-implant gingival mRNA expression levels of pro-inflammatory cytokines (TNF-α) and osteoclastogenesis-related cytokines (RANKL). In both WT and TLR2/4 KO mice, the bone resorption around implants was significantly increased in the ligation only group when compared to the non-ligation group, but TLR2/4 KO mice showed significantly less bone loss compared to WT mice after ligation. As expected, gingival injection of anti-RANKL antibody significantly reduced bone loss compared with the ligation only group in both WT and TLR2/4 KO mice. Moreover, injection of miR-146a in addition to anti-RANKL antibody significantly enhanced the inhibition of bone loss in WT mice but not in TLR2/4 KO mice. Gingival mRNA expressions of RANKL were significantly reduced by anti-RANKL antibody treatment in both WT and TLR2/4 KO mice but were not affected by the additional miR-146a treatment. Gingival mRNA expression of TNF-α was significantly reduced by miR-146a treatment in WT mice but not in TLR2/4 KO mice. The number of gingival inflammatory cell infiltration and peri-implant TRAP-positive cell formation was significantly reduced by the additional miR-146a treatment in WT mice but not in TLR2/4 KO mice. Conclusions This study suggests that anti-inflammatory miR-146a enhance anti-RANKL-induced inhibition of peri-implant bone resorption through the regulation of TLR2/4 signaling and inhibition of TNF-α expression.
|