A quantum material spintronic resonator

Abstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum ma...

Full description

Bibliographic Details
Main Authors: Jun-Wen Xu, Yizhang Chen, Nicolás M. Vargas, Pavel Salev, Pavel N. Lapa, Juan Trastoy, Julie Grollier, Ivan K. Schuller, Andrew D. Kent
Format: Article
Language:English
Published: Nature Portfolio 2021-07-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-93404-4
_version_ 1819037481418358784
author Jun-Wen Xu
Yizhang Chen
Nicolás M. Vargas
Pavel Salev
Pavel N. Lapa
Juan Trastoy
Julie Grollier
Ivan K. Schuller
Andrew D. Kent
author_facet Jun-Wen Xu
Yizhang Chen
Nicolás M. Vargas
Pavel Salev
Pavel N. Lapa
Juan Trastoy
Julie Grollier
Ivan K. Schuller
Andrew D. Kent
author_sort Jun-Wen Xu
collection DOAJ
description Abstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 , with Ni, Permalloy ( $${\hbox {Ni}}_{80}{\hbox {Fe}}_{20}$$ Ni 80 Fe 20 ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.
first_indexed 2024-12-21T08:22:06Z
format Article
id doaj.art-d7bdc98b8cdc430dbd62e7a408df62c2
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-12-21T08:22:06Z
publishDate 2021-07-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-d7bdc98b8cdc430dbd62e7a408df62c22022-12-21T19:10:25ZengNature PortfolioScientific Reports2045-23222021-07-011111610.1038/s41598-021-93404-4A quantum material spintronic resonatorJun-Wen Xu0Yizhang Chen1Nicolás M. Vargas2Pavel Salev3Pavel N. Lapa4Juan Trastoy5Julie Grollier6Ivan K. Schuller7Andrew D. Kent8Department of Physics, Center for Quantum Phenomena, New York UniversityDepartment of Physics, Center for Quantum Phenomena, New York UniversityDepartment of Physics, Center for Advanced Nanoscience, University of California-San DiegoDepartment of Physics, Center for Advanced Nanoscience, University of California-San DiegoDepartment of Physics, Center for Advanced Nanoscience, University of California-San DiegoUnité Mixte de Physique, CNRS, Thales, Université Paris-SaclayUnité Mixte de Physique, CNRS, Thales, Université Paris-SaclayDepartment of Physics, Center for Advanced Nanoscience, University of California-San DiegoDepartment of Physics, Center for Quantum Phenomena, New York UniversityAbstract In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 , with Ni, Permalloy ( $${\hbox {Ni}}_{80}{\hbox {Fe}}_{20}$$ Ni 80 Fe 20 ) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the $${\mathrm {V}}_2{\mathrm {O}}_3$$ V 2 O 3 with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.https://doi.org/10.1038/s41598-021-93404-4
spellingShingle Jun-Wen Xu
Yizhang Chen
Nicolás M. Vargas
Pavel Salev
Pavel N. Lapa
Juan Trastoy
Julie Grollier
Ivan K. Schuller
Andrew D. Kent
A quantum material spintronic resonator
Scientific Reports
title A quantum material spintronic resonator
title_full A quantum material spintronic resonator
title_fullStr A quantum material spintronic resonator
title_full_unstemmed A quantum material spintronic resonator
title_short A quantum material spintronic resonator
title_sort quantum material spintronic resonator
url https://doi.org/10.1038/s41598-021-93404-4
work_keys_str_mv AT junwenxu aquantummaterialspintronicresonator
AT yizhangchen aquantummaterialspintronicresonator
AT nicolasmvargas aquantummaterialspintronicresonator
AT pavelsalev aquantummaterialspintronicresonator
AT pavelnlapa aquantummaterialspintronicresonator
AT juantrastoy aquantummaterialspintronicresonator
AT juliegrollier aquantummaterialspintronicresonator
AT ivankschuller aquantummaterialspintronicresonator
AT andrewdkent aquantummaterialspintronicresonator
AT junwenxu quantummaterialspintronicresonator
AT yizhangchen quantummaterialspintronicresonator
AT nicolasmvargas quantummaterialspintronicresonator
AT pavelsalev quantummaterialspintronicresonator
AT pavelnlapa quantummaterialspintronicresonator
AT juantrastoy quantummaterialspintronicresonator
AT juliegrollier quantummaterialspintronicresonator
AT ivankschuller quantummaterialspintronicresonator
AT andrewdkent quantummaterialspintronicresonator