Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors
Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anch...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-12-01
|
Series: | Molecular Therapy: Methods & Clinical Development |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2329050122001309 |
_version_ | 1797991919723216896 |
---|---|
author | Marta García Jose Bonafont Jesús Martínez-Palacios Rudan Xu Giandomenico Turchiano Stina Svensson Adrian J. Thrasher Fernando Larcher Marcela Del Rio Rubén Hernández-Alcoceba Marina I. Garín Ángeles Mencía Rodolfo Murillas |
author_facet | Marta García Jose Bonafont Jesús Martínez-Palacios Rudan Xu Giandomenico Turchiano Stina Svensson Adrian J. Thrasher Fernando Larcher Marcela Del Rio Rubén Hernández-Alcoceba Marina I. Garín Ángeles Mencía Rodolfo Murillas |
author_sort | Marta García |
collection | DOAJ |
description | Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anchoring fibrils that bind the dermis and epidermis. Ex vivo correction of COL7A1 by gene editing in patients’ cells has been achieved before. However, in vivo editing approaches are necessary to address the direct treatment of the blistering lesions characteristic of this disease. We have now generated adenoviral vectors for CRISPR-Cas9 delivery to remove exon 80 of COL7A1, which contains a highly prevalent frameshift mutation in Spanish patients. For in vivo testing, a humanized skin mouse model was used. Efficient viral transduction of skin was observed after excisional wounds generated with a surgical punch on regenerated patient skin grafts were filled with the adenoviral vectors embedded in a fibrin gel. Type VII collagen deposition in the basement membrane zone of the wounded areas treated with the vectors correlated with restoration of dermal-epidermal adhesion, demonstrating that recessive dystrophic epidermolysis bullosa (RDEB) patient skin lesions can be directly treated by CRISPR-Cas9 delivery in vivo. |
first_indexed | 2024-04-11T08:59:55Z |
format | Article |
id | doaj.art-d7c843aebbdf4538b32d4bed782a099b |
institution | Directory Open Access Journal |
issn | 2329-0501 |
language | English |
last_indexed | 2024-04-11T08:59:55Z |
publishDate | 2022-12-01 |
publisher | Elsevier |
record_format | Article |
series | Molecular Therapy: Methods & Clinical Development |
spelling | doaj.art-d7c843aebbdf4538b32d4bed782a099b2022-12-22T04:32:50ZengElsevierMolecular Therapy: Methods & Clinical Development2329-05012022-12-012796108Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectorsMarta García0Jose Bonafont1Jesús Martínez-Palacios2Rudan Xu3Giandomenico Turchiano4Stina Svensson5Adrian J. Thrasher6Fernando Larcher7Marcela Del Rio8Rubén Hernández-Alcoceba9Marina I. Garín10Ángeles Mencía11Rodolfo Murillas12Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, SpainMolecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UKUnidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, SpainDepartment of Biomedical Engineering, Carlos III University (UC3M), Madrid, SpainInfection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UKInfection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UKInfection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UKUnidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, SpainDepartment of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, SpainUniversidad de Navarra, CIMA, Programa de Terapia Génica y Regulación de la Expresión Génica, Pamplona, SpainUnidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, SpainUnidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Corresponding author Ángeles Mencía, Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Corresponding author Rodolfo Murillas, Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anchoring fibrils that bind the dermis and epidermis. Ex vivo correction of COL7A1 by gene editing in patients’ cells has been achieved before. However, in vivo editing approaches are necessary to address the direct treatment of the blistering lesions characteristic of this disease. We have now generated adenoviral vectors for CRISPR-Cas9 delivery to remove exon 80 of COL7A1, which contains a highly prevalent frameshift mutation in Spanish patients. For in vivo testing, a humanized skin mouse model was used. Efficient viral transduction of skin was observed after excisional wounds generated with a surgical punch on regenerated patient skin grafts were filled with the adenoviral vectors embedded in a fibrin gel. Type VII collagen deposition in the basement membrane zone of the wounded areas treated with the vectors correlated with restoration of dermal-epidermal adhesion, demonstrating that recessive dystrophic epidermolysis bullosa (RDEB) patient skin lesions can be directly treated by CRISPR-Cas9 delivery in vivo.http://www.sciencedirect.com/science/article/pii/S2329050122001309gene editingepidermolysis bullosaRDEBadenoviral vectorCRISPR-Casin vivo gene therapy |
spellingShingle | Marta García Jose Bonafont Jesús Martínez-Palacios Rudan Xu Giandomenico Turchiano Stina Svensson Adrian J. Thrasher Fernando Larcher Marcela Del Rio Rubén Hernández-Alcoceba Marina I. Garín Ángeles Mencía Rodolfo Murillas Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors Molecular Therapy: Methods & Clinical Development gene editing epidermolysis bullosa RDEB adenoviral vector CRISPR-Cas in vivo gene therapy |
title | Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors |
title_full | Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors |
title_fullStr | Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors |
title_full_unstemmed | Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors |
title_short | Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors |
title_sort | preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo crispr cas9 delivery using adenoviral vectors |
topic | gene editing epidermolysis bullosa RDEB adenoviral vector CRISPR-Cas in vivo gene therapy |
url | http://www.sciencedirect.com/science/article/pii/S2329050122001309 |
work_keys_str_mv | AT martagarcia preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT josebonafont preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT jesusmartinezpalacios preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT rudanxu preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT giandomenicoturchiano preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT stinasvensson preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT adrianjthrasher preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT fernandolarcher preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT marceladelrio preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT rubenhernandezalcoceba preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT marinaigarin preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT angelesmencia preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors AT rodolfomurillas preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors |