Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors

Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anch...

Full description

Bibliographic Details
Main Authors: Marta García, Jose Bonafont, Jesús Martínez-Palacios, Rudan Xu, Giandomenico Turchiano, Stina Svensson, Adrian J. Thrasher, Fernando Larcher, Marcela Del Rio, Rubén Hernández-Alcoceba, Marina I. Garín, Ángeles Mencía, Rodolfo Murillas
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Molecular Therapy: Methods & Clinical Development
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2329050122001309
_version_ 1797991919723216896
author Marta García
Jose Bonafont
Jesús Martínez-Palacios
Rudan Xu
Giandomenico Turchiano
Stina Svensson
Adrian J. Thrasher
Fernando Larcher
Marcela Del Rio
Rubén Hernández-Alcoceba
Marina I. Garín
Ángeles Mencía
Rodolfo Murillas
author_facet Marta García
Jose Bonafont
Jesús Martínez-Palacios
Rudan Xu
Giandomenico Turchiano
Stina Svensson
Adrian J. Thrasher
Fernando Larcher
Marcela Del Rio
Rubén Hernández-Alcoceba
Marina I. Garín
Ángeles Mencía
Rodolfo Murillas
author_sort Marta García
collection DOAJ
description Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anchoring fibrils that bind the dermis and epidermis. Ex vivo correction of COL7A1 by gene editing in patients’ cells has been achieved before. However, in vivo editing approaches are necessary to address the direct treatment of the blistering lesions characteristic of this disease. We have now generated adenoviral vectors for CRISPR-Cas9 delivery to remove exon 80 of COL7A1, which contains a highly prevalent frameshift mutation in Spanish patients. For in vivo testing, a humanized skin mouse model was used. Efficient viral transduction of skin was observed after excisional wounds generated with a surgical punch on regenerated patient skin grafts were filled with the adenoviral vectors embedded in a fibrin gel. Type VII collagen deposition in the basement membrane zone of the wounded areas treated with the vectors correlated with restoration of dermal-epidermal adhesion, demonstrating that recessive dystrophic epidermolysis bullosa (RDEB) patient skin lesions can be directly treated by CRISPR-Cas9 delivery in vivo.
first_indexed 2024-04-11T08:59:55Z
format Article
id doaj.art-d7c843aebbdf4538b32d4bed782a099b
institution Directory Open Access Journal
issn 2329-0501
language English
last_indexed 2024-04-11T08:59:55Z
publishDate 2022-12-01
publisher Elsevier
record_format Article
series Molecular Therapy: Methods & Clinical Development
spelling doaj.art-d7c843aebbdf4538b32d4bed782a099b2022-12-22T04:32:50ZengElsevierMolecular Therapy: Methods & Clinical Development2329-05012022-12-012796108Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectorsMarta García0Jose Bonafont1Jesús Martínez-Palacios2Rudan Xu3Giandomenico Turchiano4Stina Svensson5Adrian J. Thrasher6Fernando Larcher7Marcela Del Rio8Rubén Hernández-Alcoceba9Marina I. Garín10Ángeles Mencía11Rodolfo Murillas12Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, SpainMolecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UKUnidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, SpainDepartment of Biomedical Engineering, Carlos III University (UC3M), Madrid, SpainInfection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UKInfection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UKInfection, Immunity and Inflammation Research and Teaching Department, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, UKUnidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, SpainDepartment of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, SpainUniversidad de Navarra, CIMA, Programa de Terapia Génica y Regulación de la Expresión Génica, Pamplona, SpainUnidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, SpainUnidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Corresponding author Ángeles Mencía, Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Corresponding author Rodolfo Murillas, Unidad de Innovación Biomédica, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain.Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anchoring fibrils that bind the dermis and epidermis. Ex vivo correction of COL7A1 by gene editing in patients’ cells has been achieved before. However, in vivo editing approaches are necessary to address the direct treatment of the blistering lesions characteristic of this disease. We have now generated adenoviral vectors for CRISPR-Cas9 delivery to remove exon 80 of COL7A1, which contains a highly prevalent frameshift mutation in Spanish patients. For in vivo testing, a humanized skin mouse model was used. Efficient viral transduction of skin was observed after excisional wounds generated with a surgical punch on regenerated patient skin grafts were filled with the adenoviral vectors embedded in a fibrin gel. Type VII collagen deposition in the basement membrane zone of the wounded areas treated with the vectors correlated with restoration of dermal-epidermal adhesion, demonstrating that recessive dystrophic epidermolysis bullosa (RDEB) patient skin lesions can be directly treated by CRISPR-Cas9 delivery in vivo.http://www.sciencedirect.com/science/article/pii/S2329050122001309gene editingepidermolysis bullosaRDEBadenoviral vectorCRISPR-Casin vivo gene therapy
spellingShingle Marta García
Jose Bonafont
Jesús Martínez-Palacios
Rudan Xu
Giandomenico Turchiano
Stina Svensson
Adrian J. Thrasher
Fernando Larcher
Marcela Del Rio
Rubén Hernández-Alcoceba
Marina I. Garín
Ángeles Mencía
Rodolfo Murillas
Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors
Molecular Therapy: Methods & Clinical Development
gene editing
epidermolysis bullosa
RDEB
adenoviral vector
CRISPR-Cas
in vivo gene therapy
title Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors
title_full Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors
title_fullStr Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors
title_full_unstemmed Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors
title_short Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors
title_sort preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo crispr cas9 delivery using adenoviral vectors
topic gene editing
epidermolysis bullosa
RDEB
adenoviral vector
CRISPR-Cas
in vivo gene therapy
url http://www.sciencedirect.com/science/article/pii/S2329050122001309
work_keys_str_mv AT martagarcia preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT josebonafont preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT jesusmartinezpalacios preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT rudanxu preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT giandomenicoturchiano preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT stinasvensson preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT adrianjthrasher preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT fernandolarcher preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT marceladelrio preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT rubenhernandezalcoceba preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT marinaigarin preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT angelesmencia preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors
AT rodolfomurillas preclinicalmodelforphenotypiccorrectionofdystrophicepidermolysisbullosabyinvivocrisprcas9deliveryusingadenoviralvectors