Least energy sign-changing solutions for a class of fractional $ (p, q) $-Laplacian problems with critical growth in $ \mathbb{R}^N $

This paper considers the following fractional $ (p, q) $-Laplacian equation: $ (-\Delta)_{p}^{s} u+(-\Delta)_{q}^{s} u+V(x)\left(|u|^{p-2} u+|u|^{q-2} u\right) = \lambda f(u)+|u|^{q^*_s-2}u \quad \text { in } \mathbb{R}^{N}, $ where $ s \in(0, 1), \lambda > 0, 2 < p <...

Full description

Bibliographic Details
Main Authors: Kun Cheng, Shenghao Feng, Li Wang, Yuangen Zhan
Format: Article
Language:English
Published: AIMS Press 2023-04-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023675?viewType=HTML
_version_ 1827964477113368576
author Kun Cheng
Shenghao Feng
Li Wang
Yuangen Zhan
author_facet Kun Cheng
Shenghao Feng
Li Wang
Yuangen Zhan
author_sort Kun Cheng
collection DOAJ
description This paper considers the following fractional $ (p, q) $-Laplacian equation: $ (-\Delta)_{p}^{s} u+(-\Delta)_{q}^{s} u+V(x)\left(|u|^{p-2} u+|u|^{q-2} u\right) = \lambda f(u)+|u|^{q^*_s-2}u \quad \text { in } \mathbb{R}^{N}, $ where $ s \in(0, 1), \lambda > 0, 2 < p < q < \frac{N}{s} $, $ (-\Delta)_{t}^{s} $ with $ t \in\{p, q\} $ is the fractional $ t $-Laplacian operator, and potential $ V $ is a continuous function. Using constrained variational methods, a quantitative Deformation Lemma and Brouwer degree theory, we prove that the above problem has a least energy sign-changing solution $ u_{\lambda} $ under suitable conditions on $ f $, $ V $ and $ \lambda $. Moreover, we show that the energy of $ u_{\lambda} $ is strictly larger than two times the ground state energy.
first_indexed 2024-04-09T17:16:39Z
format Article
id doaj.art-d7e1c8b2526c4d739142ba47c6b101d6
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-09T17:16:39Z
publishDate 2023-04-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-d7e1c8b2526c4d739142ba47c6b101d62023-04-20T01:10:30ZengAIMS PressAIMS Mathematics2473-69882023-04-0186133251335010.3934/math.2023675Least energy sign-changing solutions for a class of fractional $ (p, q) $-Laplacian problems with critical growth in $ \mathbb{R}^N $Kun Cheng 0Shenghao Feng 1 Li Wang2Yuangen Zhan 31. School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China2. School of Mathematics and Computer Science, Nanchang University, Nanchang 330031, China3. College of Science, East China Jiaotong University, Nanchang 330013, China4. School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, ChinaThis paper considers the following fractional $ (p, q) $-Laplacian equation: $ (-\Delta)_{p}^{s} u+(-\Delta)_{q}^{s} u+V(x)\left(|u|^{p-2} u+|u|^{q-2} u\right) = \lambda f(u)+|u|^{q^*_s-2}u \quad \text { in } \mathbb{R}^{N}, $ where $ s \in(0, 1), \lambda > 0, 2 < p < q < \frac{N}{s} $, $ (-\Delta)_{t}^{s} $ with $ t \in\{p, q\} $ is the fractional $ t $-Laplacian operator, and potential $ V $ is a continuous function. Using constrained variational methods, a quantitative Deformation Lemma and Brouwer degree theory, we prove that the above problem has a least energy sign-changing solution $ u_{\lambda} $ under suitable conditions on $ f $, $ V $ and $ \lambda $. Moreover, we show that the energy of $ u_{\lambda} $ is strictly larger than two times the ground state energy.https://www.aimspress.com/article/doi/10.3934/math.2023675?viewType=HTMLfractional $ (p, q) $-laplaciansign-changing solutionscritical problem
spellingShingle Kun Cheng
Shenghao Feng
Li Wang
Yuangen Zhan
Least energy sign-changing solutions for a class of fractional $ (p, q) $-Laplacian problems with critical growth in $ \mathbb{R}^N $
AIMS Mathematics
fractional $ (p, q) $-laplacian
sign-changing solutions
critical problem
title Least energy sign-changing solutions for a class of fractional $ (p, q) $-Laplacian problems with critical growth in $ \mathbb{R}^N $
title_full Least energy sign-changing solutions for a class of fractional $ (p, q) $-Laplacian problems with critical growth in $ \mathbb{R}^N $
title_fullStr Least energy sign-changing solutions for a class of fractional $ (p, q) $-Laplacian problems with critical growth in $ \mathbb{R}^N $
title_full_unstemmed Least energy sign-changing solutions for a class of fractional $ (p, q) $-Laplacian problems with critical growth in $ \mathbb{R}^N $
title_short Least energy sign-changing solutions for a class of fractional $ (p, q) $-Laplacian problems with critical growth in $ \mathbb{R}^N $
title_sort least energy sign changing solutions for a class of fractional p q laplacian problems with critical growth in mathbb r n
topic fractional $ (p, q) $-laplacian
sign-changing solutions
critical problem
url https://www.aimspress.com/article/doi/10.3934/math.2023675?viewType=HTML
work_keys_str_mv AT kuncheng leastenergysignchangingsolutionsforaclassoffractionalpqlaplacianproblemswithcriticalgrowthinmathbbrn
AT shenghaofeng leastenergysignchangingsolutionsforaclassoffractionalpqlaplacianproblemswithcriticalgrowthinmathbbrn
AT liwang leastenergysignchangingsolutionsforaclassoffractionalpqlaplacianproblemswithcriticalgrowthinmathbbrn
AT yuangenzhan leastenergysignchangingsolutionsforaclassoffractionalpqlaplacianproblemswithcriticalgrowthinmathbbrn