Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.)
Abstract Background The evolutionarily conserved Polycomb Repressive Complex 2 (PRC2) plays a vital role in epigenetic gene repression by depositing tri-methylation on lysine residue K27 of histone H3 (H3K27me3) at the target loci, thus participating in diverse biological processes. However, few rep...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2023-02-01
|
Series: | BMC Plant Biology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12870-023-04075-4 |
_version_ | 1828041767050543104 |
---|---|
author | Kai Cheng Cangbao Lei Siyuan Zhang Qiao Zheng Chunyan Wei Weiyi Huang Minghui Xing Junli Zhang Xiangyu Zhang Xiao Zhang |
author_facet | Kai Cheng Cangbao Lei Siyuan Zhang Qiao Zheng Chunyan Wei Weiyi Huang Minghui Xing Junli Zhang Xiangyu Zhang Xiao Zhang |
author_sort | Kai Cheng |
collection | DOAJ |
description | Abstract Background The evolutionarily conserved Polycomb Repressive Complex 2 (PRC2) plays a vital role in epigenetic gene repression by depositing tri-methylation on lysine residue K27 of histone H3 (H3K27me3) at the target loci, thus participating in diverse biological processes. However, few reports about PRC2 are available in plant species with large and complicated genomes, like cotton. Results Here, we performed a genome-wide identification and comprehensive analysis of cotton PRC2 core components, especially in upland cotton (Gossypium hirsutum). Firstly, a total of 8 and 16 PRC2 core components were identified in diploid and tetraploid cotton species, respectively. These components were classified into four groups, E(z), Su(z)12, ESC and p55, and the members in the same group displayed good collinearity, similar gene structure and domain organization. Next, we cloned G. hirsutum PRC2 (GhPRC2) core components, and found that most of GhPRC2 proteins were localized in the nucleus, and interacted with each other to form multi-subunit complexes. Moreover, we analyzed the expression profile of GhPRC2 genes. The transcriptome data and quantitative real-time PCR (qRT-PCR) assays indicated that GhPRC2 genes were ubiquitously but differentially expressed in various tissues, with high expression levels in reproductive organs like petals, stamens and pistils. And the expressions of several GhPRC2 genes, especially E(z) group genes, were responsive to various abiotic and biotic stresses, including drought, salinity, extreme temperature, and Verticillium dahliae (Vd) infection. Conclusion We identified PRC2 core components in upland cotton, and systematically investigated their classifications, phylogenetic and synteny relationships, gene structures, domain organizations, subcellular localizations, protein interactions, tissue-specific and stresses-responsive expression patterns. Our results will provide insights into the evolution and composition of cotton PRC2, and lay the foundation for further investigation of their biological functions and regulatory mechanisms. |
first_indexed | 2024-04-10T17:20:59Z |
format | Article |
id | doaj.art-d7e394e3189d4c91a7d31aca8f9eef15 |
institution | Directory Open Access Journal |
issn | 1471-2229 |
language | English |
last_indexed | 2024-04-10T17:20:59Z |
publishDate | 2023-02-01 |
publisher | BMC |
record_format | Article |
series | BMC Plant Biology |
spelling | doaj.art-d7e394e3189d4c91a7d31aca8f9eef152023-02-05T12:08:10ZengBMCBMC Plant Biology1471-22292023-02-0123111910.1186/s12870-023-04075-4Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.)Kai Cheng0Cangbao Lei1Siyuan Zhang2Qiao Zheng3Chunyan Wei4Weiyi Huang5Minghui Xing6Junli Zhang7Xiangyu Zhang8Xiao Zhang9State Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityState Key Laboratory of Cotton Biology, School of Life Sciences, Henan UniversityAbstract Background The evolutionarily conserved Polycomb Repressive Complex 2 (PRC2) plays a vital role in epigenetic gene repression by depositing tri-methylation on lysine residue K27 of histone H3 (H3K27me3) at the target loci, thus participating in diverse biological processes. However, few reports about PRC2 are available in plant species with large and complicated genomes, like cotton. Results Here, we performed a genome-wide identification and comprehensive analysis of cotton PRC2 core components, especially in upland cotton (Gossypium hirsutum). Firstly, a total of 8 and 16 PRC2 core components were identified in diploid and tetraploid cotton species, respectively. These components were classified into four groups, E(z), Su(z)12, ESC and p55, and the members in the same group displayed good collinearity, similar gene structure and domain organization. Next, we cloned G. hirsutum PRC2 (GhPRC2) core components, and found that most of GhPRC2 proteins were localized in the nucleus, and interacted with each other to form multi-subunit complexes. Moreover, we analyzed the expression profile of GhPRC2 genes. The transcriptome data and quantitative real-time PCR (qRT-PCR) assays indicated that GhPRC2 genes were ubiquitously but differentially expressed in various tissues, with high expression levels in reproductive organs like petals, stamens and pistils. And the expressions of several GhPRC2 genes, especially E(z) group genes, were responsive to various abiotic and biotic stresses, including drought, salinity, extreme temperature, and Verticillium dahliae (Vd) infection. Conclusion We identified PRC2 core components in upland cotton, and systematically investigated their classifications, phylogenetic and synteny relationships, gene structures, domain organizations, subcellular localizations, protein interactions, tissue-specific and stresses-responsive expression patterns. Our results will provide insights into the evolution and composition of cotton PRC2, and lay the foundation for further investigation of their biological functions and regulatory mechanisms.https://doi.org/10.1186/s12870-023-04075-4PRC2Genome-wide identificationGene expressionUpland cotton |
spellingShingle | Kai Cheng Cangbao Lei Siyuan Zhang Qiao Zheng Chunyan Wei Weiyi Huang Minghui Xing Junli Zhang Xiangyu Zhang Xiao Zhang Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.) BMC Plant Biology PRC2 Genome-wide identification Gene expression Upland cotton |
title | Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.) |
title_full | Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.) |
title_fullStr | Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.) |
title_full_unstemmed | Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.) |
title_short | Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.) |
title_sort | genome wide identification and characterization of polycomb repressive complex 2 core components in upland cotton gossypium hirsutum l |
topic | PRC2 Genome-wide identification Gene expression Upland cotton |
url | https://doi.org/10.1186/s12870-023-04075-4 |
work_keys_str_mv | AT kaicheng genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT cangbaolei genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT siyuanzhang genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT qiaozheng genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT chunyanwei genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT weiyihuang genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT minghuixing genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT junlizhang genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT xiangyuzhang genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml AT xiaozhang genomewideidentificationandcharacterizationofpolycombrepressivecomplex2corecomponentsinuplandcottongossypiumhirsutuml |