3DLEB-Net: Label-Efficient Deep Learning-Based Semantic Segmentation of Building Point Clouds at LoD3 Level

In current research, fully supervised Deep Learning (DL) techniques are employed to train a segmentation network to be applied to point clouds of buildings. However, training such networks requires large amounts of fine-labeled buildings’ point-cloud data, presenting a major challenge in practice be...

Full description

Bibliographic Details
Main Authors: Yuwei Cao, Marco Scaioni
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/19/8996
Description
Summary:In current research, fully supervised Deep Learning (DL) techniques are employed to train a segmentation network to be applied to point clouds of buildings. However, training such networks requires large amounts of fine-labeled buildings’ point-cloud data, presenting a major challenge in practice because they are difficult to obtain. Consequently, the application of fully supervised DL for semantic segmentation of buildings’ point clouds at LoD3 level is severely limited. In order to reduce the number of required annotated labels, we proposed a novel label-efficient DL network that obtains per-point semantic labels of LoD3 buildings’ point clouds with limited supervision, named 3DLEB-Net. In general, it consists of two steps. The first step (Autoencoder, AE) is composed of a Dynamic Graph Convolutional Neural Network (DGCNN) encoder and a folding-based decoder. It is designed to extract discriminative global and local features from input point clouds by faithfully reconstructing them without any label. The second step is the semantic segmentation network. By supplying a small amount of task-specific supervision, a segmentation network is proposed for semantically segmenting the encoded features acquired from the pre-trained AE. Experimentally, we evaluated our approach based on the Architectural Cultural Heritage (ArCH) dataset. Compared to the fully supervised DL methods, we found that our model achieved state-of-the-art results on the unseen scenes, with only 10% of labeled training data from fully supervised methods as input. Moreover, we conducted a series of ablation studies to show the effectiveness of the design choices of our model.
ISSN:2076-3417