Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning

All-solid-state batteries (ASSBs) are the important attributes of the forthcoming technologies for electrochemical energy storage. A key element of ASSBs is the solid electrolyte materials. Garnets are considered promising candidates for solid electrolytes of ASSBs due to their chemical stability wi...

Full description

Bibliographic Details
Main Authors: Natalia Kireeva, Aslan Yu. Tsivadze, Vladislav S. Pervov
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Batteries
Subjects:
Online Access:https://www.mdpi.com/2313-0105/9/9/430
_version_ 1797581334859743232
author Natalia Kireeva
Aslan Yu. Tsivadze
Vladislav S. Pervov
author_facet Natalia Kireeva
Aslan Yu. Tsivadze
Vladislav S. Pervov
author_sort Natalia Kireeva
collection DOAJ
description All-solid-state batteries (ASSBs) are the important attributes of the forthcoming technologies for electrochemical energy storage. A key element of ASSBs is the solid electrolyte materials. Garnets are considered promising candidates for solid electrolytes of ASSBs due to their chemical stability with Li metal anodes, reasonable kinetic characteristics (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>L</mi><mi>i</mi></mrow></msub></semantics></math></inline-formula>∼ 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>–10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></semantics></math></inline-formula> S · cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) and a wide electrochemical window. This study is aimed at the analysis of the experimental data available for garnet thin films, examining the ionic conductivity through the film/substrate lattice mismatch, the elastic properties and the difference in the thermal expansion characteristics of the film and the substrate, the deposition temperature of the film, and the melting point and the dielectric constant of the substrate. Based on the results of this analysis and by introducing the corresponding characteristics involved as the descriptors, the quantitative models for predicting the ionic conductivity values were developed. Some important characteristic features for ion transport in garnet films, which are primarily concerned with the film/substrate misfit, elastic properties, deposition temperature, cation segregation and the space charge effects, are discussed.
first_indexed 2024-03-10T23:02:58Z
format Article
id doaj.art-d7f1dfec6e90408083f3b1aed6c349e2
institution Directory Open Access Journal
issn 2313-0105
language English
last_indexed 2024-03-10T23:02:58Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Batteries
spelling doaj.art-d7f1dfec6e90408083f3b1aed6c349e22023-11-19T09:33:19ZengMDPI AGBatteries2313-01052023-08-019943010.3390/batteries9090430Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine LearningNatalia Kireeva0Aslan Yu. Tsivadze1Vladislav S. Pervov2Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky Prosp, 31, Moscow 119071, RussiaFrumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky Prosp, 31, Moscow 119071, RussiaKurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prosp, 31, Moscow 119071, RussiaAll-solid-state batteries (ASSBs) are the important attributes of the forthcoming technologies for electrochemical energy storage. A key element of ASSBs is the solid electrolyte materials. Garnets are considered promising candidates for solid electrolytes of ASSBs due to their chemical stability with Li metal anodes, reasonable kinetic characteristics (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>L</mi><mi>i</mi></mrow></msub></semantics></math></inline-formula>∼ 10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>–10<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></semantics></math></inline-formula> S · cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) and a wide electrochemical window. This study is aimed at the analysis of the experimental data available for garnet thin films, examining the ionic conductivity through the film/substrate lattice mismatch, the elastic properties and the difference in the thermal expansion characteristics of the film and the substrate, the deposition temperature of the film, and the melting point and the dielectric constant of the substrate. Based on the results of this analysis and by introducing the corresponding characteristics involved as the descriptors, the quantitative models for predicting the ionic conductivity values were developed. Some important characteristic features for ion transport in garnet films, which are primarily concerned with the film/substrate misfit, elastic properties, deposition temperature, cation segregation and the space charge effects, are discussed.https://www.mdpi.com/2313-0105/9/9/430solid electrolytesthin filmsionic conductivityelastic characteristicsmachine learning
spellingShingle Natalia Kireeva
Aslan Yu. Tsivadze
Vladislav S. Pervov
Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning
Batteries
solid electrolytes
thin films
ionic conductivity
elastic characteristics
machine learning
title Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning
title_full Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning
title_fullStr Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning
title_full_unstemmed Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning
title_short Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning
title_sort predicting ionic conductivity in thin films of garnet electrolytes using machine learning
topic solid electrolytes
thin films
ionic conductivity
elastic characteristics
machine learning
url https://www.mdpi.com/2313-0105/9/9/430
work_keys_str_mv AT nataliakireeva predictingionicconductivityinthinfilmsofgarnetelectrolytesusingmachinelearning
AT aslanyutsivadze predictingionicconductivityinthinfilmsofgarnetelectrolytesusingmachinelearning
AT vladislavspervov predictingionicconductivityinthinfilmsofgarnetelectrolytesusingmachinelearning