Multi-Source Data Integration to Investigate a Deep-Seated Landslide Affecting a Bridge

The integration of data from different sources can be very helpful in understanding the mechanism, the geometry, the kinematic, and the area affected by complex instabilities, especially when the available geotechnical information is limited. In this work, the suitability of different techniques for...

Full description

Bibliographic Details
Main Authors: José Luis Pastor, Roberto Tomás, Luca Lettieri, Adrián Riquelme, Miguel Cano, Donato Infante, Massimo Ramondini, Diego Di Martire
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/16/1878
Description
Summary:The integration of data from different sources can be very helpful in understanding the mechanism, the geometry, the kinematic, and the area affected by complex instabilities, especially when the available geotechnical information is limited. In this work, the suitability of different techniques for the study of a deep-seated landslide affecting a bridge in Alcoy (Spain) is evaluated. This infrastructure presents such severe damage that has rendered the bridge unusable, which prevents normal access to an important industrial area. Differential SAR Interferometry (DInSAR) and terrestrial Light Detection and Ranging (LiDAR) remote sensing techniques have been combined with ground displacement monitoring techniques, such as inclinometers and conventional geological and geotechnical investigation, electrical-seismic tomography, damage, and topographic surveys, to determine the boundaries, mechanism, and kinematics of the landslide. The successful case study that is illustrated in this work highlights the potential and the need for integrating multi-source data for the optimal management of complex landslides and the effective design of remedial measurements.
ISSN:2072-4292