Lie Bialgebra Structures on the Lie Algebra <inline-formula><math display="inline"><semantics><mi mathvariant="fraktur">L</mi></semantics></math></inline-formula> Related to the Virasoro Algebra

A Lie bialgebra is a vector space endowed simultaneously with the structure of a Lie algebra and the structure of a Lie coalgebra, and some compatibility condition. Moreover, Lie brackets have skew symmetry. Because of the close relation between Lie bialgebras and quantum groups, it is interesting t...

Full description

Bibliographic Details
Main Authors: Xue Chen, Yihong Su, Jia Zheng
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/1/239
Description
Summary:A Lie bialgebra is a vector space endowed simultaneously with the structure of a Lie algebra and the structure of a Lie coalgebra, and some compatibility condition. Moreover, Lie brackets have skew symmetry. Because of the close relation between Lie bialgebras and quantum groups, it is interesting to consider the Lie bialgebra structures on the Lie algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">L</mi></semantics></math></inline-formula> related to the Virasoro algebra. In this paper, the Lie bialgebras on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">L</mi></semantics></math></inline-formula> are investigated by computing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>Der</mi><mo>(</mo></mrow><mi mathvariant="fraktur">L</mi><mrow><mo>,</mo><mo> </mo></mrow><mi mathvariant="fraktur">L</mi><mo>⊗</mo><mi mathvariant="fraktur">L</mi><mo>)</mo></mrow></semantics></math></inline-formula>. It is proved that all such Lie bialgebras are triangular coboundary, and the first cohomology group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mn>1</mn></msup><mo>(</mo><mi mathvariant="fraktur">L</mi><mrow><mo>,</mo><mo> </mo></mrow><mi mathvariant="fraktur">L</mi><mo>⊗</mo><mi mathvariant="fraktur">L</mi><mo>)</mo></mrow></semantics></math></inline-formula> is trivial.
ISSN:2073-8994