Uniqueness of meromorphic functions concerning fixed points

In this paper, we study a uniqueness question of meromorphic functions concerning fixed points and mainly prove the following theorem: Let $ f $ and $ g $ be two nonconstant meromorphic functions, let $ n, k $ be two positive integers with $ n > 3k+10.5-\Theta_{\min}(k+6.5) $, if $ \Theta_{\m...

Full description

Bibliographic Details
Main Authors: Jinyu Fan, Mingliang Fang, Jianbin Xiao
Format: Article
Language:English
Published: AIMS Press 2022-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20221122?viewType=HTML
_version_ 1817983570151473152
author Jinyu Fan
Mingliang Fang
Jianbin Xiao
author_facet Jinyu Fan
Mingliang Fang
Jianbin Xiao
author_sort Jinyu Fan
collection DOAJ
description In this paper, we study a uniqueness question of meromorphic functions concerning fixed points and mainly prove the following theorem: Let $ f $ and $ g $ be two nonconstant meromorphic functions, let $ n, k $ be two positive integers with $ n &gt; 3k+10.5-\Theta_{\min}(k+6.5) $, if $ \Theta_{\min}\geq \frac{2.5}{k+6.5} $, otherwise $ n &gt; 3k+8 $, and let $ (f^{n})^{(k)} $ and $ (g^{n})^{(k)} $ share $ z $ CM, $ f $ and $ g $ share $ \infty $ IM, then one of the following two cases holds: If $ k = 1 $, then either $ f(z) = c_{1}e^{cz^{2}} $, $ g(z) = c_{2}e^{-cz^{2}} $, where $ c_{1}, c_{2} $ and $ c $ are three constants satisfying $ 4n^{2}(c_{1}c_{2})^{n}c^{2} = -1 $, or $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $; if $ k\geq2 $, then $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $. Our results extend and improve some results due to <sup>[<xref ref-type="bibr" rid="b8">8</xref>,<xref ref-type="bibr" rid="b9">9</xref>,<xref ref-type="bibr" rid="b19">19</xref>,<xref ref-type="bibr" rid="b24">24</xref>]</sup>.
first_indexed 2024-04-13T23:34:44Z
format Article
id doaj.art-d81d13900de6408483e47f8b35995f37
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-13T23:34:44Z
publishDate 2022-09-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-d81d13900de6408483e47f8b35995f372022-12-22T02:24:48ZengAIMS PressAIMS Mathematics2473-69882022-09-01712204902050910.3934/math.20221122Uniqueness of meromorphic functions concerning fixed pointsJinyu Fan0Mingliang Fang 1Jianbin Xiao2Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, ChinaDepartment of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, ChinaDepartment of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, ChinaIn this paper, we study a uniqueness question of meromorphic functions concerning fixed points and mainly prove the following theorem: Let $ f $ and $ g $ be two nonconstant meromorphic functions, let $ n, k $ be two positive integers with $ n &gt; 3k+10.5-\Theta_{\min}(k+6.5) $, if $ \Theta_{\min}\geq \frac{2.5}{k+6.5} $, otherwise $ n &gt; 3k+8 $, and let $ (f^{n})^{(k)} $ and $ (g^{n})^{(k)} $ share $ z $ CM, $ f $ and $ g $ share $ \infty $ IM, then one of the following two cases holds: If $ k = 1 $, then either $ f(z) = c_{1}e^{cz^{2}} $, $ g(z) = c_{2}e^{-cz^{2}} $, where $ c_{1}, c_{2} $ and $ c $ are three constants satisfying $ 4n^{2}(c_{1}c_{2})^{n}c^{2} = -1 $, or $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $; if $ k\geq2 $, then $ f = tg $ for a constant $ t $ such that $ t^{n} = 1 $. Our results extend and improve some results due to <sup>[<xref ref-type="bibr" rid="b8">8</xref>,<xref ref-type="bibr" rid="b9">9</xref>,<xref ref-type="bibr" rid="b19">19</xref>,<xref ref-type="bibr" rid="b24">24</xref>]</sup>.https://www.aimspress.com/article/doi/10.3934/math.20221122?viewType=HTMLmeromorphic functionentire functionunicityfixed point
spellingShingle Jinyu Fan
Mingliang Fang
Jianbin Xiao
Uniqueness of meromorphic functions concerning fixed points
AIMS Mathematics
meromorphic function
entire function
unicity
fixed point
title Uniqueness of meromorphic functions concerning fixed points
title_full Uniqueness of meromorphic functions concerning fixed points
title_fullStr Uniqueness of meromorphic functions concerning fixed points
title_full_unstemmed Uniqueness of meromorphic functions concerning fixed points
title_short Uniqueness of meromorphic functions concerning fixed points
title_sort uniqueness of meromorphic functions concerning fixed points
topic meromorphic function
entire function
unicity
fixed point
url https://www.aimspress.com/article/doi/10.3934/math.20221122?viewType=HTML
work_keys_str_mv AT jinyufan uniquenessofmeromorphicfunctionsconcerningfixedpoints
AT mingliangfang uniquenessofmeromorphicfunctionsconcerningfixedpoints
AT jianbinxiao uniquenessofmeromorphicfunctionsconcerningfixedpoints