Summary: | In metal-organic frameworks (MOFs), mixed-metal clusters have the opportunity to adsorb hydrogen molecules due to a greater charge density of the metal. Such interactions may subsequently enhance the gravimetric uptake of hydrogen. However, only a few papers have explored the ability of mixed-metal MOFs to increase hydrogen uptake. The present work reveals the preparation of mixed metal metal-organic frameworks M-MOF-5 (where M = Ni<sup>2+</sup>, Co<sup>2+</sup>, and Fe<sup>2+</sup>) (where MOF-5 designates MOFs such as Zn<sup>2+</sup> and 1,4-benzenedicarboxylic acid ligand) using the post-synthetic exchange (PSE) technique. Powder X-ray diffraction patterns and scanning electron microscopy images indicate the presence of crystalline phases after metal exchange, and the inductively coupled plasma–mass spectroscopy analysis confirmed the exchange of metals by means of the PSE technique. The nitrogen adsorption isotherms established the production of microporous M-MOF-5. Although the additional metal ions decreased the surface area, the exchanged materials displayed unique features in the gravimetric uptake of hydrogen. The parent MOF-5 and the metal exchanged materials (Ni-MOF-5, Co-MOF-5, and Fe-MOF-5) demonstrated hydrogen capacities of 1.46, 1.53, 1.53, and 0.99 wt.%, respectively. The metal-exchanged Ni-MOF-5 and Co-MOF-5 revealed slightly higher H<sub>2</sub> uptake in comparison with MOF-5; however, the Fe-MOF-5 showed a decrease in uptake due to partial discrete complex formation (discrete complexes with one or more metal ions) with less crystalline nature. The Sips model was found to be excellent in describing the H<sub>2</sub> adsorption isotherms with a correlation coefficient ≅ 1. The unique hydrogen uptakes of Ni<sup>−</sup> and Co-MOF-5 shown in this study pave the way for further improvement in hydrogen uptake.
|