Light-Intensity-Induced Characterization of Elastic Constants and d33 Piezoelectric Coefficient of PLZT Single Fiber Based Transducers

Enhanced functionality of electro-optic devices by implementing piezoelectric micro fibers into their construction is proposed. Lanthanum-modified lead zirconate titanate (PLZT) ceramics are known to exhibit high light transparency, desirable electro-optic properties and fast response. In this study...

Full description

Bibliographic Details
Main Authors: Jiri Erhart, Frank Jörg Clemens, Lucjan Kozielski
Format: Article
Language:English
Published: MDPI AG 2013-02-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/13/2/2419
Description
Summary:Enhanced functionality of electro-optic devices by implementing piezoelectric micro fibers into their construction is proposed. Lanthanum-modified lead zirconate titanate (PLZT) ceramics are known to exhibit high light transparency, desirable electro-optic properties and fast response. In this study PLZT fibers with a diameter of around 300 microns were produced by a thermoplastic processing method and their light-induced impedance and piezoelectric coefficient were investigated at relatively low light intensity (below 50 mW/cm2). The authors experimentally proved higher performance of light controlled microfiber transducers in comparison to their bulk form. The advantage of the high surface area to volume ratio is shown to be an excellent technique to design high quality light sensors by using fibrous materials. The UV absorption induced change in elastic constants of 3% and 4% for the piezoelectric coefficient d33.
ISSN:1424-8220