Higher-resolution wavefront sensing based on sub-wavefront information extraction

The limited spatial sampling rates of conventional Shack–Hartmann wavefront sensors (SHWFSs) make them unable to sense higher-order wavefront distortion. In this study, by etching a known phase on each microlens to modulate sub-wavefront, we propose a higher-resolution wavefront reconstruction metho...

Full description

Bibliographic Details
Main Authors: Hongli Guan, Wang Zhao, Shuai Wang, Kangjian Yang, Mengmeng Zhao, Shenghu Liu, Han Guo, Ping Yang
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-01-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphy.2023.1336651/full
Description
Summary:The limited spatial sampling rates of conventional Shack–Hartmann wavefront sensors (SHWFSs) make them unable to sense higher-order wavefront distortion. In this study, by etching a known phase on each microlens to modulate sub-wavefront, we propose a higher-resolution wavefront reconstruction method that employs a modified modal Zernike wavefront reconstruction algorithm, in which the reconstruction matrix contains quadratic information that is extracted using a neural network. We validate this method through simulations, and the results show that once the network has been trained, for various atmospheric conditions and spatial sampling rates, the proposed method enables fast and accurate high-resolution wavefront reconstruction. Furthermore, it has highly competitive advantages such as fast dataset generation, simple network structure, and short prediction time.
ISSN:2296-424X