Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry
General nonrelativistic theory has been developed and the expressions obtained for the tangential (dissipative) and radial (conservative) image forces and van der Waals forces (vdW) acting on charged and neutral particles when they move parallel to the axis of a cylinder with circular cross-section,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Universe |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1997/7/4/106 |
_version_ | 1797537216516325376 |
---|---|
author | George V. Dedkov |
author_facet | George V. Dedkov |
author_sort | George V. Dedkov |
collection | DOAJ |
description | General nonrelativistic theory has been developed and the expressions obtained for the tangential (dissipative) and radial (conservative) image forces and van der Waals forces (vdW) acting on charged and neutral particles when they move parallel to the axis of a cylinder with circular cross-section, or in the space between coaxial cylinders. Numerical calculations of vdW forces have been performed for metal (Au) and dielectric (Si) materials of cylinders (filaments) and Cs atoms at velocities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><msup><mrow><mn>10</mn></mrow><mn>7</mn></msup><mi mathvariant="normal">m</mi><mo>/</mo><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>. A remarkable result is that in the case of metal cylinders (atomic filaments and chains) the dynamic vdW potential can be repulsive for certain values of the velocity–distance parameter and the characteristic atomic frequency. In the case of a Si material, the dynamic vdW potential increases relative to the static one (by modulus) when the velocity–distance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>ω</mi><mn>0</mn></msub><mo>/</mo><mi>R</mi></mrow></semantics></math></inline-formula> changes from zero to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><mn>1.3</mn></mrow></semantics></math></inline-formula> and then tends to zero. |
first_indexed | 2024-03-10T12:11:56Z |
format | Article |
id | doaj.art-d82ad135a28b448fbdba9a0509e76ee7 |
institution | Directory Open Access Journal |
issn | 2218-1997 |
language | English |
last_indexed | 2024-03-10T12:11:56Z |
publishDate | 2021-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Universe |
spelling | doaj.art-d82ad135a28b448fbdba9a0509e76ee72023-11-21T16:11:20ZengMDPI AGUniverse2218-19972021-04-017410610.3390/universe7040106Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical GeometryGeorge V. Dedkov0Nanoscale Physics Group, Kabardino-Balkarian State University, 360004 Nalchik, RussiaGeneral nonrelativistic theory has been developed and the expressions obtained for the tangential (dissipative) and radial (conservative) image forces and van der Waals forces (vdW) acting on charged and neutral particles when they move parallel to the axis of a cylinder with circular cross-section, or in the space between coaxial cylinders. Numerical calculations of vdW forces have been performed for metal (Au) and dielectric (Si) materials of cylinders (filaments) and Cs atoms at velocities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><msup><mrow><mn>10</mn></mrow><mn>7</mn></msup><mi mathvariant="normal">m</mi><mo>/</mo><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>. A remarkable result is that in the case of metal cylinders (atomic filaments and chains) the dynamic vdW potential can be repulsive for certain values of the velocity–distance parameter and the characteristic atomic frequency. In the case of a Si material, the dynamic vdW potential increases relative to the static one (by modulus) when the velocity–distance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>ω</mi><mn>0</mn></msub><mo>/</mo><mi>R</mi></mrow></semantics></math></inline-formula> changes from zero to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><mn>1.3</mn></mrow></semantics></math></inline-formula> and then tends to zero.https://www.mdpi.com/2218-1997/7/4/106atom–wall interactions in cylindrical configurationsdynamic image forcesvan der Waals forces |
spellingShingle | George V. Dedkov Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry Universe atom–wall interactions in cylindrical configurations dynamic image forces van der Waals forces |
title | Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry |
title_full | Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry |
title_fullStr | Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry |
title_full_unstemmed | Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry |
title_short | Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry |
title_sort | van der waals interactions of moving particles with surfaces of cylindrical geometry |
topic | atom–wall interactions in cylindrical configurations dynamic image forces van der Waals forces |
url | https://www.mdpi.com/2218-1997/7/4/106 |
work_keys_str_mv | AT georgevdedkov vanderwaalsinteractionsofmovingparticleswithsurfacesofcylindricalgeometry |