Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry

General nonrelativistic theory has been developed and the expressions obtained for the tangential (dissipative) and radial (conservative) image forces and van der Waals forces (vdW) acting on charged and neutral particles when they move parallel to the axis of a cylinder with circular cross-section,...

Full description

Bibliographic Details
Main Author: George V. Dedkov
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/4/106
_version_ 1797537216516325376
author George V. Dedkov
author_facet George V. Dedkov
author_sort George V. Dedkov
collection DOAJ
description General nonrelativistic theory has been developed and the expressions obtained for the tangential (dissipative) and radial (conservative) image forces and van der Waals forces (vdW) acting on charged and neutral particles when they move parallel to the axis of a cylinder with circular cross-section, or in the space between coaxial cylinders. Numerical calculations of vdW forces have been performed for metal (Au) and dielectric (Si) materials of cylinders (filaments) and Cs atoms at velocities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><msup><mrow><mn>10</mn></mrow><mn>7</mn></msup><mi mathvariant="normal">m</mi><mo>/</mo><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>. A remarkable result is that in the case of metal cylinders (atomic filaments and chains) the dynamic vdW potential can be repulsive for certain values of the velocity–distance parameter and the characteristic atomic frequency. In the case of a Si material, the dynamic vdW potential increases relative to the static one (by modulus) when the velocity–distance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>ω</mi><mn>0</mn></msub><mo>/</mo><mi>R</mi></mrow></semantics></math></inline-formula> changes from zero to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><mn>1.3</mn></mrow></semantics></math></inline-formula> and then tends to zero.
first_indexed 2024-03-10T12:11:56Z
format Article
id doaj.art-d82ad135a28b448fbdba9a0509e76ee7
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-10T12:11:56Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-d82ad135a28b448fbdba9a0509e76ee72023-11-21T16:11:20ZengMDPI AGUniverse2218-19972021-04-017410610.3390/universe7040106Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical GeometryGeorge V. Dedkov0Nanoscale Physics Group, Kabardino-Balkarian State University, 360004 Nalchik, RussiaGeneral nonrelativistic theory has been developed and the expressions obtained for the tangential (dissipative) and radial (conservative) image forces and van der Waals forces (vdW) acting on charged and neutral particles when they move parallel to the axis of a cylinder with circular cross-section, or in the space between coaxial cylinders. Numerical calculations of vdW forces have been performed for metal (Au) and dielectric (Si) materials of cylinders (filaments) and Cs atoms at velocities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><msup><mrow><mn>10</mn></mrow><mn>7</mn></msup><mi mathvariant="normal">m</mi><mo>/</mo><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>. A remarkable result is that in the case of metal cylinders (atomic filaments and chains) the dynamic vdW potential can be repulsive for certain values of the velocity–distance parameter and the characteristic atomic frequency. In the case of a Si material, the dynamic vdW potential increases relative to the static one (by modulus) when the velocity–distance parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><msub><mi>ω</mi><mn>0</mn></msub><mo>/</mo><mi>R</mi></mrow></semantics></math></inline-formula> changes from zero to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><mn>1.3</mn></mrow></semantics></math></inline-formula> and then tends to zero.https://www.mdpi.com/2218-1997/7/4/106atom–wall interactions in cylindrical configurationsdynamic image forcesvan der Waals forces
spellingShingle George V. Dedkov
Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry
Universe
atom–wall interactions in cylindrical configurations
dynamic image forces
van der Waals forces
title Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry
title_full Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry
title_fullStr Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry
title_full_unstemmed Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry
title_short Van der Waals Interactions of Moving Particles with Surfaces of Cylindrical Geometry
title_sort van der waals interactions of moving particles with surfaces of cylindrical geometry
topic atom–wall interactions in cylindrical configurations
dynamic image forces
van der Waals forces
url https://www.mdpi.com/2218-1997/7/4/106
work_keys_str_mv AT georgevdedkov vanderwaalsinteractionsofmovingparticleswithsurfacesofcylindricalgeometry