Design of a novel intelligent computing framework for predictive solutions of malaria propagation model.

The paper presents an innovative computational framework for predictive solutions for simulating the spread of malaria. The structure incorporates sophisticated computing methods to improve the reliability of predicting malaria outbreaks. The study strives to provide a strong and effective tool for...

Full description

Bibliographic Details
Main Authors: Kottakkaran Sooppy Nisar, Muhammad Wajahat Anjum, Muhammad Asif Zahoor Raja, Muhammad Shoaib
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298451&type=printable
_version_ 1797194898859884544
author Kottakkaran Sooppy Nisar
Muhammad Wajahat Anjum
Muhammad Asif Zahoor Raja
Muhammad Shoaib
author_facet Kottakkaran Sooppy Nisar
Muhammad Wajahat Anjum
Muhammad Asif Zahoor Raja
Muhammad Shoaib
author_sort Kottakkaran Sooppy Nisar
collection DOAJ
description The paper presents an innovative computational framework for predictive solutions for simulating the spread of malaria. The structure incorporates sophisticated computing methods to improve the reliability of predicting malaria outbreaks. The study strives to provide a strong and effective tool for forecasting the propagation of malaria via the use of an AI-based recurrent neural network (RNN). The model is classified into two groups, consisting of humans and mosquitoes. To develop the model, the traditional Ross-Macdonald model is expanded upon, allowing for a more comprehensive analysis of the intricate dynamics at play. To gain a deeper understanding of the extended Ross model, we employ RNN, treating it as an initial value problem involving a system of first-order ordinary differential equations, each representing one of the seven profiles. This method enables us to obtain valuable insights and elucidate the complexities inherent in the propagation of malaria. Mosquitoes and humans constitute the two cohorts encompassed within the exposition of the mathematical dynamical model. Human dynamics are comprised of individuals who are susceptible, exposed, infectious, and in recovery. The mosquito population, on the other hand, is divided into three categories: susceptible, exposed, and infected. For RNN, we used the input of 0 to 300 days with an interval length of 3 days. The evaluation of the precision and accuracy of the methodology is conducted by superimposing the estimated solution onto the numerical solution. In addition, the outcomes obtained from the RNN are examined, including regression analysis, assessment of error autocorrelation, examination of time series response plots, mean square error, error histogram, and absolute error. A reduced mean square error signifies that the model's estimates are more accurate. The result is consistent with acquiring an approximate absolute error close to zero, revealing the efficacy of the suggested strategy. This research presents a novel approach to solving the malaria propagation model using recurrent neural networks. Additionally, it examines the behavior of various profiles under varying initial conditions of the malaria propagation model, which consists of a system of ordinary differential equations.
first_indexed 2024-04-24T06:03:36Z
format Article
id doaj.art-d82b0aedfab04c69831341ef037800fe
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-04-24T06:03:36Z
publishDate 2024-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-d82b0aedfab04c69831341ef037800fe2024-04-23T05:31:53ZengPublic Library of Science (PLoS)PLoS ONE1932-62032024-01-01194e029845110.1371/journal.pone.0298451Design of a novel intelligent computing framework for predictive solutions of malaria propagation model.Kottakkaran Sooppy NisarMuhammad Wajahat AnjumMuhammad Asif Zahoor RajaMuhammad ShoaibThe paper presents an innovative computational framework for predictive solutions for simulating the spread of malaria. The structure incorporates sophisticated computing methods to improve the reliability of predicting malaria outbreaks. The study strives to provide a strong and effective tool for forecasting the propagation of malaria via the use of an AI-based recurrent neural network (RNN). The model is classified into two groups, consisting of humans and mosquitoes. To develop the model, the traditional Ross-Macdonald model is expanded upon, allowing for a more comprehensive analysis of the intricate dynamics at play. To gain a deeper understanding of the extended Ross model, we employ RNN, treating it as an initial value problem involving a system of first-order ordinary differential equations, each representing one of the seven profiles. This method enables us to obtain valuable insights and elucidate the complexities inherent in the propagation of malaria. Mosquitoes and humans constitute the two cohorts encompassed within the exposition of the mathematical dynamical model. Human dynamics are comprised of individuals who are susceptible, exposed, infectious, and in recovery. The mosquito population, on the other hand, is divided into three categories: susceptible, exposed, and infected. For RNN, we used the input of 0 to 300 days with an interval length of 3 days. The evaluation of the precision and accuracy of the methodology is conducted by superimposing the estimated solution onto the numerical solution. In addition, the outcomes obtained from the RNN are examined, including regression analysis, assessment of error autocorrelation, examination of time series response plots, mean square error, error histogram, and absolute error. A reduced mean square error signifies that the model's estimates are more accurate. The result is consistent with acquiring an approximate absolute error close to zero, revealing the efficacy of the suggested strategy. This research presents a novel approach to solving the malaria propagation model using recurrent neural networks. Additionally, it examines the behavior of various profiles under varying initial conditions of the malaria propagation model, which consists of a system of ordinary differential equations.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298451&type=printable
spellingShingle Kottakkaran Sooppy Nisar
Muhammad Wajahat Anjum
Muhammad Asif Zahoor Raja
Muhammad Shoaib
Design of a novel intelligent computing framework for predictive solutions of malaria propagation model.
PLoS ONE
title Design of a novel intelligent computing framework for predictive solutions of malaria propagation model.
title_full Design of a novel intelligent computing framework for predictive solutions of malaria propagation model.
title_fullStr Design of a novel intelligent computing framework for predictive solutions of malaria propagation model.
title_full_unstemmed Design of a novel intelligent computing framework for predictive solutions of malaria propagation model.
title_short Design of a novel intelligent computing framework for predictive solutions of malaria propagation model.
title_sort design of a novel intelligent computing framework for predictive solutions of malaria propagation model
url https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298451&type=printable
work_keys_str_mv AT kottakkaransooppynisar designofanovelintelligentcomputingframeworkforpredictivesolutionsofmalariapropagationmodel
AT muhammadwajahatanjum designofanovelintelligentcomputingframeworkforpredictivesolutionsofmalariapropagationmodel
AT muhammadasifzahoorraja designofanovelintelligentcomputingframeworkforpredictivesolutionsofmalariapropagationmodel
AT muhammadshoaib designofanovelintelligentcomputingframeworkforpredictivesolutionsofmalariapropagationmodel