Underwater image enhancement method with non-uniform illumination based on Retinex and ADMM

In order to solve the image blurring and distortion problem caused by underwater non-uniform and low illumination, this paper proposes an underwater image enhancement algorithm based on the Retinex theory and the Alternating Direction Method of Multipliers (ADMM). Firstly, the L component of the ori...

Full description

Bibliographic Details
Format: Article
Language:zho
Published: EDP Sciences 2021-08-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
Online Access:https://www.jnwpu.org/articles/jnwpu/full_html/2021/04/jnwpu2021394p824/jnwpu2021394p824.html
Description
Summary:In order to solve the image blurring and distortion problem caused by underwater non-uniform and low illumination, this paper proposes an underwater image enhancement algorithm based on the Retinex theory and the Alternating Direction Method of Multipliers (ADMM). Firstly, the L component of the original image in the Lab space is extracted as the initial illumination map, and an Augmented Lagrange Multiplier (ALM) framework is constructed based on the ADMM to optimize the initial illumination map in order to obtain an accurate illumination image. In addition, the illumination map is further corrected in the luminance region with the Gamma Correction. Secondly, combined with the color constancy characteristics in the Retinex theory, the reflected image of the object is obtained. Finally, the bilateral filter is picked to suppress the underwater noise and obtain a more detailed enhanced image. The experimental results show that the underwater image enhancement algorithm can effectively solve the non-uniform illumination problem caused by natural light or artificial light source and improve the underwater image quality, thus having a better performance than other algorithms.
ISSN:1000-2758
2609-7125