Summary: | Abstract Background Sciadonic acid (SA) is an anti-inflammatory fatty acid displacing arachidonic acid (ARA) from specific phospholipid pools, thus modulating downstream pro-inflammatory lipid mediators. Its novel anti-inflammatory actions have been studied in vitro, in pre-clinical models, and stemming from testimonials, after topical- and oral application. It has not been tested in a formal clinical study for topical benefits previously. Skin barrier layer was our focus as it has a critically important role in maintaining skin moisture balance. Methods Herein, forearm skin was left undamaged; or barrier layer was chemically-damaged with 2% sodium lauryl sulfate (SLS) for 24 h. SLS-damaged skin was left untreated or treated with Delta-5® oil containing 24% SA twice daily for 27 days. Barrier function was assessed by open chamber transepidermal water loss (TEWL) and skin surface impedance on days 0 (clear skin), -1 (1-day post-SLS), -2 (2-days post-SLS, 1-day post-Delta-5), -3, -7, and − 28. Results Relative to day 1, Delta-5 oil statistically significantly decreased TEWL vs. untreated damaged sites, on days 3 (125% more reduced), -7 (74% more reduced), and − 28 (69% more reduced). Decreases in TEWL following chemical damage indicates improved skin barrier repair and healing. Similar patterns were quantified for skin impedance. There was also reduced redness observed on days 3 and − 7 with Delta-5 oil vs. untreated SLS-damaged skin. Conclusions Delta-5 oil thus has anti-inflammatory potential in human skin, under controlled clinical conditions, to accelerate irritant-induced healing, and improve skin barrier function. Improvement in barrier function would benefit dermatitis, acne, eczema, and skin scarring. In normal skin, Delta-5 oil has potential to promote healthy, moisturized skin; and improve skin structure, elasticity, and firmness.
|