Effects of Temperature-Dependent Conductivity and Magnetic Field on the Radiated Carreau Nanofluid Flow and Entropy Generation

This investigation is related to this study of entropy generation during Carreau nanofluid flow under variable thermal conductivity conditions. The heat and mass transfer phenomena are observed in the presence of thermal radiation and activation energy. The flow is induced by a porous stretching sur...

Full description

Bibliographic Details
Main Authors: Sami Ullah Khan, Imen Safra, Kaouther Ghachem, Hind Albalawi, Taher Labidi, Lioua Kolsi
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/10/1847
Description
Summary:This investigation is related to this study of entropy generation during Carreau nanofluid flow under variable thermal conductivity conditions. The heat and mass transfer phenomena are observed in the presence of thermal radiation and activation energy. The flow is induced by a porous stretching surface. Appropriate variables are used in order to simplify the problem into dimensionless form. The numerical simulations are performed by using the shooting technique. The physical aspects of the problem in view of different flow parameters are reported. It is observed that consideration of variable fluid thermal conductivity enhances heat transfer. An enhancement in heat and mass transfer phenomena is observed with increasing the Weissenberg number. Moreover, entropy generation increases with Weissenberg and Brinkman numbers. Current results present applications in thermal processes, heat exchangers, energy systems, combustion and engine design, chemical processes, refrigeration systems, etc.
ISSN:2073-8994