On the Residual Finiteness of Some Generalized Products of Soluble Groups of Finite Rank
<p>Let G be a free product of residually finite virtually soluble groups A and B of finite rank with an amalgamated subgroup H, H 6= A and H 6= B. And let H contains a subgroup W of finite index which is normal in both A and B. We prove that the group G is residually finite if and only if the...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2013-01-01
|
Series: | Моделирование и анализ информационных систем |
Subjects: | |
Online Access: | http://mais-journal.ru/jour/article/view/224 |
Summary: | <p>Let G be a free product of residually finite virtually soluble groups A and B of finite rank with an amalgamated subgroup H, H 6= A and H 6= B. And let H contains a subgroup W of finite index which is normal in both A and B. We prove that the group G is residually finite if and only if the subgroup H is finitely separable in A and B. Also we prove that if all subgroups of A and B are finitely separable in A and B, respectively, all finitely generated subgroups of G are finitely separable in G.</p> |
---|---|
ISSN: | 1818-1015 2313-5417 |