Summary: | It has been extensively found that parasitoids manipulate host physiology to benefit the survival and development of their offspring. However, the underlying regulatory mechanisms have not received much attention. To reveal the effects of parasitization of the larval solitary endoparasitoid <i>Microplitis manilae</i> (Hymenoptera: Braconidae) on host <i>Spodoptera frugiperda</i> (Lepidoptera: Noctuidae), one of the most destructive agricultural pests in China, deep-sequencing-based transcriptome analysis was conducted to compare the host gene expression levels after 2 h, 24 h, and 48 h parasitization. A total of 1861, 962, and 108 differentially expressed genes (DEGs) were obtained from the <i>S. frugiperda</i> larvae at 2 h, 24 h, and 48 h post-parasitization, respectively, compared with unparasitized controls. The changes in host gene expressions were most likely caused by the injection of wasp parasitic factors, including PDVs, that were injected along with the eggs during oviposition. Based on the functional annotations in GO and KEGG databases, we revealed that most DEGs were implicated in host metabolism and immunity. Further analysis of the common DEGs in three comparisons between the unparasitized and parasitized groups identified four genes, including one unknown and three prophenoloxidase (PPO) genes. Moreover, 46 and 7 common DEGs involved in host metabolism and immunity were identified at two or three time points after parasitization, respectively. Among these, most DEGs showed increased expressions at 2 h post-wasp parasitization while exhibiting significantly decreased expression levels at 24 h post-parasitization, demonstrating the expression regulations of <i>M. manilae</i> parasitization on host metabolism and immune-related genes. Further qPCR verification in 20 randomly selected DEGs confirmed the accuracy and reproducibility of the gene expression profiles generated from RNA-seq. This study reveals the molecular regulatory network about how host insects respond to wasp parasitism, laying a solid foundation for revealing the physiological manipulation of wasp parasitization on host insects, which facilitates the development of biological control practices for parasitoids.
|