Engine Performance and Emissions Analysis in a Cold, Intermediate and Hot Start Diesel Engine

Presented in this paper is an in-depth analysis of the impact of engine start during various stages of engine warm up (cold, intermediate, and hot start stages) on the performance and emissions of a heavy-duty diesel engine. The experiments were performed at constant engine speeds of 1500 and 2000 r...

Full description

Bibliographic Details
Main Authors: Faisal Lodi, Ali Zare, Priyanka Arora, Svetlana Stevanovic, Mohammad Jafari, Zoran Ristovski, Richard J. Brown, Timothy Bodisco
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/11/3839
Description
Summary:Presented in this paper is an in-depth analysis of the impact of engine start during various stages of engine warm up (cold, intermediate, and hot start stages) on the performance and emissions of a heavy-duty diesel engine. The experiments were performed at constant engine speeds of 1500 and 2000 rpm on a custom designed drive cycle. The intermediate start stage was found to be longer than the cold start stage. The oil warm up lagged the coolant warm up by approximately 10 °C. During the cold start stage, as the coolant temperature increased from ~25 to 60 °C, the brake specific fuel consumption (BSFC) decreased by approximately 2% to 10%. In the intermediate start stage, as the coolant temperature reached 70 °C and the injection retarded, the indicated mean effective pressure (IMEP) and the brake mean effective pressure (BMEP) decreased by approximately 2% to 3%, while the friction mean effective pressure (FMEP) decreased by approximately 60%. In this stage, the NOx emissions decreased by approximately 25% to 45%, while the HC emissions increased by approximately 12% to 18%. The normalised FMEP showed that higher energy losses at lower loads were most likely contributing to the heating of the lubricating oil.
ISSN:2076-3417