Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data

Live-cell Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></in...

Full description

Bibliographic Details
Main Authors: Lena-Marie Woelk, Sukanya A. Kannabiran , Valerie J. Brock , Christine E. Gee , Christian Lohr , Andreas H. Guse , Björn-Philipp Diercks , René Werner
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/21/11792
_version_ 1797512457969729536
author Lena-Marie Woelk
Sukanya A. Kannabiran 
Valerie J. Brock 
Christine E. Gee 
Christian Lohr 
Andreas H. Guse 
Björn-Philipp Diercks 
René Werner
author_facet Lena-Marie Woelk
Sukanya A. Kannabiran 
Valerie J. Brock 
Christine E. Gee 
Christian Lohr 
Andreas H. Guse 
Björn-Philipp Diercks 
René Werner
author_sort Lena-Marie Woelk
collection DOAJ
description Live-cell Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for <i>static</i> images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to <i>time-dependent</i> image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.
first_indexed 2024-03-10T06:01:08Z
format Article
id doaj.art-d866c1d7c1a5432ab339cbd65077aec0
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-10T06:01:08Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-d866c1d7c1a5432ab339cbd65077aec02023-11-22T20:57:58ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672021-10-0122211179210.3390/ijms222111792Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy DataLena-Marie Woelk0Sukanya A. Kannabiran 1Valerie J. Brock 2Christine E. Gee 3Christian Lohr 4Andreas H. Guse 5Björn-Philipp Diercks 6René Werner7Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, GermanyDepartment of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, GermanyDepartment of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, GermanyInstitute of Synaptic Physiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, GermanyDivision of Neurophysiology, Institute of Zoology, University of Hamburg, 20146 Hamburg, GermanyDepartment of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, GermanyDepartment of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, GermanyDepartment of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, GermanyLive-cell Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for <i>static</i> images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to <i>time-dependent</i> image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></semantics></math></inline-formula> signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.https://www.mdpi.com/1422-0067/22/21/11792Ca<sup>2+</sup> imagingfluorescence microscopylive-cell imaginglow signal-to-noise ratiodeconvolutionimage restoration
spellingShingle Lena-Marie Woelk
Sukanya A. Kannabiran 
Valerie J. Brock 
Christine E. Gee 
Christian Lohr 
Andreas H. Guse 
Björn-Philipp Diercks 
René Werner
Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data
International Journal of Molecular Sciences
Ca<sup>2+</sup> imaging
fluorescence microscopy
live-cell imaging
low signal-to-noise ratio
deconvolution
image restoration
title Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data
title_full Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data
title_fullStr Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data
title_full_unstemmed Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data
title_short Time-Dependent Image Restoration of Low-SNR Live-Cell Ca<sup>2</sup> Fluorescence Microscopy Data
title_sort time dependent image restoration of low snr live cell ca sup 2 sup fluorescence microscopy data
topic Ca<sup>2+</sup> imaging
fluorescence microscopy
live-cell imaging
low signal-to-noise ratio
deconvolution
image restoration
url https://www.mdpi.com/1422-0067/22/21/11792
work_keys_str_mv AT lenamariewoelk timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata
AT sukanyaakannabiran timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata
AT valeriejbrock timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata
AT christineegee timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata
AT christianlohr timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata
AT andreashguse timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata
AT bjornphilippdiercks timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata
AT renewerner timedependentimagerestorationoflowsnrlivecellcasup2supfluorescencemicroscopydata