CNN Classification Architecture Study for Turbulent Free-Space and Attenuated Underwater Optical OAM Communications

Turbulence and attenuation are signal degrading factors that can severely hinder free-space and underwater OAM optical pattern demultiplexing. A variety of state-of-the-art convolutional neural network architectures are explored to identify which, if any, provide optimal performance under these non-...

Full description

Bibliographic Details
Main Authors: Patrick L. Neary, Abbie T. Watnik, Kyle Peter Judd, James R. Lindle, Nicholas S. Flann
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/24/8782
Description
Summary:Turbulence and attenuation are signal degrading factors that can severely hinder free-space and underwater OAM optical pattern demultiplexing. A variety of state-of-the-art convolutional neural network architectures are explored to identify which, if any, provide optimal performance under these non-ideal environmental conditions. Hyperparameter searches are performed on the architectures to ensure that near-ideal settings are used for training. Architectures are compared in various scenarios and the best performing, with their settings, are provided. We show that from the current state-of-the-art architectures, DenseNet outperforms all others when memory is not a constraint. When memory footprint is a factor, ShuffleNet is shown to performed the best.
ISSN:2076-3417