Design of an Energy Pile Based on CPT Data Using Soft Computing Techniques

The present study focused on the design of geothermal energy piles based on cone penetration test (<i>CPT</i>) data, which was obtained from the Perniö test site in Finland. The geothermal piles are heat-capacity systems that provide both a supply of energy and structural support to civi...

Full description

Bibliographic Details
Main Authors: Pramod Kumar, Pijush Samui
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Infrastructures
Subjects:
Online Access:https://www.mdpi.com/2412-3811/7/12/169
_version_ 1797457159808614400
author Pramod Kumar
Pijush Samui
author_facet Pramod Kumar
Pijush Samui
author_sort Pramod Kumar
collection DOAJ
description The present study focused on the design of geothermal energy piles based on cone penetration test (<i>CPT</i>) data, which was obtained from the Perniö test site in Finland. The geothermal piles are heat-capacity systems that provide both a supply of energy and structural support to civil engineering structures. In geotechnical engineering, it is necessary to provide an efficient, reliable, and precise method for calculating the group capacity of the energy piles. In this research, the first aim is to determine the most significant variables required to calculate the energy pile capacity, i.e., the pile length (<i>L</i>), pile diameter (<i>D</i>), average cone resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mrow><mi>c</mi><mn>0</mn></mrow></msub></mrow></semantics></math></inline-formula>), minimum cone resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mrow><mi>c</mi><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>), average of minimum cone resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mrow><mi>c</mi><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>), cone resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>), Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>E</mi></semantics></math></inline-formula>), coefficient of thermal expansion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>), and temperature change (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mi>T</mi></mrow></semantics></math></inline-formula>). The values of <i>q<sub>c</sub></i><sub>0</sub><i>, q<sub>c</sub></i><sub>1</sub><i>, q<sub>c</sub></i><sub>2</sub><i>, q<sub>c</sub>,</i> and <i>E</i> are then employed as model inputs in soft computing algorithms, which includes random forest (<i>RF</i>), the support vector machine (<i>SVM</i>), the gradient boosting machine (<i>GBM</i>), and extreme gradient boosting (<i>XGB</i>) in order to predict the pile group capacity. The developed soft computing models were then evaluated by using several statistical criteria, and the lowest system error with the best performance was attained by the <i>GBM</i> technique. The performance parameters, such as the coefficient of determination (<i>R</i><sup>2</sup>), root mean square error (<i>RMSE</i>), mean absolute error (<i>MAE</i>), mean biased error (<i>MBE</i>), median absolute deviation (<i>MAD</i>), weighted mean absolute percentage error (<i>WMAPE</i>), expanded uncertainty (<i>U</i><sub>95</sub>), global performance indicator (<i>GPI</i>), Theil’s inequality index (<i>TIC</i>), and the index of agreement (<i>IA</i>) values of the testing data for the <i>GBM</i> models are 0.80, 0.10, 0.08, −0.01, 0.06, 0.21, 0.28, −0.00, 0.11, and 0.94, respectively, demonstrating the strength and capacity of this soft computing algorithm in evaluating the pile’s group capacity for the energy pile. Rank analysis, error matrix, Taylor’s diagram, and the reliability index have all been developed to compare the proposed model’s accuracy. The results of this research also show that the <i>GBM</i> model developed is better at estimating the group capacity of energy piles than the other soft computing models.
first_indexed 2024-03-09T16:18:11Z
format Article
id doaj.art-d87a093c794346b7883d13f6d8f41f93
institution Directory Open Access Journal
issn 2412-3811
language English
last_indexed 2024-03-09T16:18:11Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Infrastructures
spelling doaj.art-d87a093c794346b7883d13f6d8f41f932023-11-24T15:37:49ZengMDPI AGInfrastructures2412-38112022-12-0171216910.3390/infrastructures7120169Design of an Energy Pile Based on CPT Data Using Soft Computing TechniquesPramod Kumar0Pijush Samui1Department of Civil Engineering, National Institute of Technology, Patna 800005, IndiaDepartment of Civil Engineering, National Institute of Technology, Patna 800005, IndiaThe present study focused on the design of geothermal energy piles based on cone penetration test (<i>CPT</i>) data, which was obtained from the Perniö test site in Finland. The geothermal piles are heat-capacity systems that provide both a supply of energy and structural support to civil engineering structures. In geotechnical engineering, it is necessary to provide an efficient, reliable, and precise method for calculating the group capacity of the energy piles. In this research, the first aim is to determine the most significant variables required to calculate the energy pile capacity, i.e., the pile length (<i>L</i>), pile diameter (<i>D</i>), average cone resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mrow><mi>c</mi><mn>0</mn></mrow></msub></mrow></semantics></math></inline-formula>), minimum cone resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mrow><mi>c</mi><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>), average of minimum cone resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mrow><mi>c</mi><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>), cone resistance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>), Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>E</mi></semantics></math></inline-formula>), coefficient of thermal expansion (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>), and temperature change (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mi>T</mi></mrow></semantics></math></inline-formula>). The values of <i>q<sub>c</sub></i><sub>0</sub><i>, q<sub>c</sub></i><sub>1</sub><i>, q<sub>c</sub></i><sub>2</sub><i>, q<sub>c</sub>,</i> and <i>E</i> are then employed as model inputs in soft computing algorithms, which includes random forest (<i>RF</i>), the support vector machine (<i>SVM</i>), the gradient boosting machine (<i>GBM</i>), and extreme gradient boosting (<i>XGB</i>) in order to predict the pile group capacity. The developed soft computing models were then evaluated by using several statistical criteria, and the lowest system error with the best performance was attained by the <i>GBM</i> technique. The performance parameters, such as the coefficient of determination (<i>R</i><sup>2</sup>), root mean square error (<i>RMSE</i>), mean absolute error (<i>MAE</i>), mean biased error (<i>MBE</i>), median absolute deviation (<i>MAD</i>), weighted mean absolute percentage error (<i>WMAPE</i>), expanded uncertainty (<i>U</i><sub>95</sub>), global performance indicator (<i>GPI</i>), Theil’s inequality index (<i>TIC</i>), and the index of agreement (<i>IA</i>) values of the testing data for the <i>GBM</i> models are 0.80, 0.10, 0.08, −0.01, 0.06, 0.21, 0.28, −0.00, 0.11, and 0.94, respectively, demonstrating the strength and capacity of this soft computing algorithm in evaluating the pile’s group capacity for the energy pile. Rank analysis, error matrix, Taylor’s diagram, and the reliability index have all been developed to compare the proposed model’s accuracy. The results of this research also show that the <i>GBM</i> model developed is better at estimating the group capacity of energy piles than the other soft computing models.https://www.mdpi.com/2412-3811/7/12/169thermal loadenergy pilesmachine learning algorithmsreliability analysismodel comparison
spellingShingle Pramod Kumar
Pijush Samui
Design of an Energy Pile Based on CPT Data Using Soft Computing Techniques
Infrastructures
thermal load
energy piles
machine learning algorithms
reliability analysis
model comparison
title Design of an Energy Pile Based on CPT Data Using Soft Computing Techniques
title_full Design of an Energy Pile Based on CPT Data Using Soft Computing Techniques
title_fullStr Design of an Energy Pile Based on CPT Data Using Soft Computing Techniques
title_full_unstemmed Design of an Energy Pile Based on CPT Data Using Soft Computing Techniques
title_short Design of an Energy Pile Based on CPT Data Using Soft Computing Techniques
title_sort design of an energy pile based on cpt data using soft computing techniques
topic thermal load
energy piles
machine learning algorithms
reliability analysis
model comparison
url https://www.mdpi.com/2412-3811/7/12/169
work_keys_str_mv AT pramodkumar designofanenergypilebasedoncptdatausingsoftcomputingtechniques
AT pijushsamui designofanenergypilebasedoncptdatausingsoftcomputingtechniques