Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals
Abstract Magnetic monolayers show great promise for future applications in nanoelectronics, data storage, and sensing. The research in magnetic two‐dimensional (2D) materials focuses on synthetic iodides and tellurides, which suffer from a lack of ambient stability. So far, naturally occurring layer...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2023-12-01
|
Series: | Advanced Physics Research |
Subjects: | |
Online Access: | https://doi.org/10.1002/apxr.202300070 |
_version_ | 1797384705370226688 |
---|---|
author | Muhammad Zubair Khan Oleg E. Peil Apoorva Sharma Oleksandr Selyshchev Sergio Valencia Florian Kronast Maik Zimmermann Muhammad Awais Aslam Johann G. Raith Christian Teichert Dietrich R. T. Zahn Georgeta Salvan Aleksandar Matković |
author_facet | Muhammad Zubair Khan Oleg E. Peil Apoorva Sharma Oleksandr Selyshchev Sergio Valencia Florian Kronast Maik Zimmermann Muhammad Awais Aslam Johann G. Raith Christian Teichert Dietrich R. T. Zahn Georgeta Salvan Aleksandar Matković |
author_sort | Muhammad Zubair Khan |
collection | DOAJ |
description | Abstract Magnetic monolayers show great promise for future applications in nanoelectronics, data storage, and sensing. The research in magnetic two‐dimensional (2D) materials focuses on synthetic iodides and tellurides, which suffer from a lack of ambient stability. So far, naturally occurring layered magnetic materials have been overlooked. These minerals offer a unique opportunity to explore complex air‐stable layered systems with high concentration of magnetic ions. Magnetic ordering in iron‐rich phyllosilicates is demonstrated, focusing on minnesotaite, annite, and biotite. These naturally occurring layered materials integrate local moment baring ions of iron via magnesium/aluminum substitution in their octahedral sites. Self‐inherent capping by silicate/aluminate tetrahedral groups enables air stability of ultra‐thin layers. Their structure and iron oxidation states are determined via Raman and X‐ray spectroscopies. Superconducting quantum interference device magnetometry measurements are performed to examine the magnetic ordering. Paramagnetic or superparamagnetic characteristics at room temperature are observed. Below 40 K ferrimagnetic or antiferromagnetic ordering occurs. In‐field magnetic force microscopy on exfoliated flakes confirms that the paramagnetic response at room temperature persists down to monolayers. Further, a correlation between the mixture of the oxidation states of iron and the critical ordering temperature is established, indicating a path to design materials with higher critical temperatures via oxidation state engineering. |
first_indexed | 2024-03-08T21:40:31Z |
format | Article |
id | doaj.art-d887b4fde707487996b31611d06c064c |
institution | Directory Open Access Journal |
issn | 2751-1200 |
language | English |
last_indexed | 2024-03-08T21:40:31Z |
publishDate | 2023-12-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced Physics Research |
spelling | doaj.art-d887b4fde707487996b31611d06c064c2023-12-20T14:05:15ZengWiley-VCHAdvanced Physics Research2751-12002023-12-01212n/an/a10.1002/apxr.202300070Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals MineralsMuhammad Zubair Khan0Oleg E. Peil1Apoorva Sharma2Oleksandr Selyshchev3Sergio Valencia4Florian Kronast5Maik Zimmermann6Muhammad Awais Aslam7Johann G. Raith8Christian Teichert9Dietrich R. T. Zahn10Georgeta Salvan11Aleksandar Matković12Chair of Physics Department Physics, Mechanics and Electrical Engineering Montanuniversität Leoben Leoben 8700 AustriaGroup of Computational Materials Design Materials Center Leoben Forschung GmbH (MCL) Leoben 8700 AustriaSemiconductor Physics Chemnitz University of Technology D‐09107 Chemnitz GermanySemiconductor Physics Chemnitz University of Technology D‐09107 Chemnitz GermanyDepartment of Spin and Topology in Quantum Materials Helmholtz‐Zentrum Berlin D‐12489 Berlin GermanyDepartment of Spin and Topology in Quantum Materials Helmholtz‐Zentrum Berlin D‐12489 Berlin GermanyChair of Resource Mineralogy Montanuniversität Leoben Leoben 8700 AustriaChair of Physics Department Physics, Mechanics and Electrical Engineering Montanuniversität Leoben Leoben 8700 AustriaChair of Resource Mineralogy Montanuniversität Leoben Leoben 8700 AustriaChair of Physics Department Physics, Mechanics and Electrical Engineering Montanuniversität Leoben Leoben 8700 AustriaSemiconductor Physics Chemnitz University of Technology D‐09107 Chemnitz GermanySemiconductor Physics Chemnitz University of Technology D‐09107 Chemnitz GermanyChair of Physics Department Physics, Mechanics and Electrical Engineering Montanuniversität Leoben Leoben 8700 AustriaAbstract Magnetic monolayers show great promise for future applications in nanoelectronics, data storage, and sensing. The research in magnetic two‐dimensional (2D) materials focuses on synthetic iodides and tellurides, which suffer from a lack of ambient stability. So far, naturally occurring layered magnetic materials have been overlooked. These minerals offer a unique opportunity to explore complex air‐stable layered systems with high concentration of magnetic ions. Magnetic ordering in iron‐rich phyllosilicates is demonstrated, focusing on minnesotaite, annite, and biotite. These naturally occurring layered materials integrate local moment baring ions of iron via magnesium/aluminum substitution in their octahedral sites. Self‐inherent capping by silicate/aluminate tetrahedral groups enables air stability of ultra‐thin layers. Their structure and iron oxidation states are determined via Raman and X‐ray spectroscopies. Superconducting quantum interference device magnetometry measurements are performed to examine the magnetic ordering. Paramagnetic or superparamagnetic characteristics at room temperature are observed. Below 40 K ferrimagnetic or antiferromagnetic ordering occurs. In‐field magnetic force microscopy on exfoliated flakes confirms that the paramagnetic response at room temperature persists down to monolayers. Further, a correlation between the mixture of the oxidation states of iron and the critical ordering temperature is established, indicating a path to design materials with higher critical temperatures via oxidation state engineering.https://doi.org/10.1002/apxr.2023000702D magnetic insulatorsFe‐rich phyllosilicateslayered magnetic minerals |
spellingShingle | Muhammad Zubair Khan Oleg E. Peil Apoorva Sharma Oleksandr Selyshchev Sergio Valencia Florian Kronast Maik Zimmermann Muhammad Awais Aslam Johann G. Raith Christian Teichert Dietrich R. T. Zahn Georgeta Salvan Aleksandar Matković Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals Advanced Physics Research 2D magnetic insulators Fe‐rich phyllosilicates layered magnetic minerals |
title | Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals |
title_full | Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals |
title_fullStr | Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals |
title_full_unstemmed | Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals |
title_short | Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals |
title_sort | probing magnetic ordering in air stable iron rich van der waals minerals |
topic | 2D magnetic insulators Fe‐rich phyllosilicates layered magnetic minerals |
url | https://doi.org/10.1002/apxr.202300070 |
work_keys_str_mv | AT muhammadzubairkhan probingmagneticorderinginairstableironrichvanderwaalsminerals AT olegepeil probingmagneticorderinginairstableironrichvanderwaalsminerals AT apoorvasharma probingmagneticorderinginairstableironrichvanderwaalsminerals AT oleksandrselyshchev probingmagneticorderinginairstableironrichvanderwaalsminerals AT sergiovalencia probingmagneticorderinginairstableironrichvanderwaalsminerals AT floriankronast probingmagneticorderinginairstableironrichvanderwaalsminerals AT maikzimmermann probingmagneticorderinginairstableironrichvanderwaalsminerals AT muhammadawaisaslam probingmagneticorderinginairstableironrichvanderwaalsminerals AT johanngraith probingmagneticorderinginairstableironrichvanderwaalsminerals AT christianteichert probingmagneticorderinginairstableironrichvanderwaalsminerals AT dietrichrtzahn probingmagneticorderinginairstableironrichvanderwaalsminerals AT georgetasalvan probingmagneticorderinginairstableironrichvanderwaalsminerals AT aleksandarmatkovic probingmagneticorderinginairstableironrichvanderwaalsminerals |