Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals

Abstract Magnetic monolayers show great promise for future applications in nanoelectronics, data storage, and sensing. The research in magnetic two‐dimensional (2D) materials focuses on synthetic iodides and tellurides, which suffer from a lack of ambient stability. So far, naturally occurring layer...

Full description

Bibliographic Details
Main Authors: Muhammad Zubair Khan, Oleg E. Peil, Apoorva Sharma, Oleksandr Selyshchev, Sergio Valencia, Florian Kronast, Maik Zimmermann, Muhammad Awais Aslam, Johann G. Raith, Christian Teichert, Dietrich R. T. Zahn, Georgeta Salvan, Aleksandar Matković
Format: Article
Language:English
Published: Wiley-VCH 2023-12-01
Series:Advanced Physics Research
Subjects:
Online Access:https://doi.org/10.1002/apxr.202300070
_version_ 1797384705370226688
author Muhammad Zubair Khan
Oleg E. Peil
Apoorva Sharma
Oleksandr Selyshchev
Sergio Valencia
Florian Kronast
Maik Zimmermann
Muhammad Awais Aslam
Johann G. Raith
Christian Teichert
Dietrich R. T. Zahn
Georgeta Salvan
Aleksandar Matković
author_facet Muhammad Zubair Khan
Oleg E. Peil
Apoorva Sharma
Oleksandr Selyshchev
Sergio Valencia
Florian Kronast
Maik Zimmermann
Muhammad Awais Aslam
Johann G. Raith
Christian Teichert
Dietrich R. T. Zahn
Georgeta Salvan
Aleksandar Matković
author_sort Muhammad Zubair Khan
collection DOAJ
description Abstract Magnetic monolayers show great promise for future applications in nanoelectronics, data storage, and sensing. The research in magnetic two‐dimensional (2D) materials focuses on synthetic iodides and tellurides, which suffer from a lack of ambient stability. So far, naturally occurring layered magnetic materials have been overlooked. These minerals offer a unique opportunity to explore complex air‐stable layered systems with high concentration of magnetic ions. Magnetic ordering in iron‐rich phyllosilicates is demonstrated, focusing on minnesotaite, annite, and biotite. These naturally occurring layered materials integrate local moment baring ions of iron via magnesium/aluminum substitution in their octahedral sites. Self‐inherent capping by silicate/aluminate tetrahedral groups enables air stability of ultra‐thin layers. Their structure and iron oxidation states are determined via Raman and X‐ray spectroscopies. Superconducting quantum interference device magnetometry measurements are performed to examine the magnetic ordering. Paramagnetic or superparamagnetic characteristics at room temperature are observed. Below 40 K ferrimagnetic or antiferromagnetic ordering occurs. In‐field magnetic force microscopy on exfoliated flakes confirms that the paramagnetic response at room temperature persists down to monolayers. Further, a correlation between the mixture of the oxidation states of iron and the critical ordering temperature is established, indicating a path to design materials with higher critical temperatures via oxidation state engineering.
first_indexed 2024-03-08T21:40:31Z
format Article
id doaj.art-d887b4fde707487996b31611d06c064c
institution Directory Open Access Journal
issn 2751-1200
language English
last_indexed 2024-03-08T21:40:31Z
publishDate 2023-12-01
publisher Wiley-VCH
record_format Article
series Advanced Physics Research
spelling doaj.art-d887b4fde707487996b31611d06c064c2023-12-20T14:05:15ZengWiley-VCHAdvanced Physics Research2751-12002023-12-01212n/an/a10.1002/apxr.202300070Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals MineralsMuhammad Zubair Khan0Oleg E. Peil1Apoorva Sharma2Oleksandr Selyshchev3Sergio Valencia4Florian Kronast5Maik Zimmermann6Muhammad Awais Aslam7Johann G. Raith8Christian Teichert9Dietrich R. T. Zahn10Georgeta Salvan11Aleksandar Matković12Chair of Physics Department Physics, Mechanics and Electrical Engineering Montanuniversität Leoben Leoben 8700 AustriaGroup of Computational Materials Design Materials Center Leoben Forschung GmbH (MCL) Leoben 8700 AustriaSemiconductor Physics Chemnitz University of Technology D‐09107 Chemnitz GermanySemiconductor Physics Chemnitz University of Technology D‐09107 Chemnitz GermanyDepartment of Spin and Topology in Quantum Materials Helmholtz‐Zentrum Berlin D‐12489 Berlin GermanyDepartment of Spin and Topology in Quantum Materials Helmholtz‐Zentrum Berlin D‐12489 Berlin GermanyChair of Resource Mineralogy Montanuniversität Leoben Leoben 8700 AustriaChair of Physics Department Physics, Mechanics and Electrical Engineering Montanuniversität Leoben Leoben 8700 AustriaChair of Resource Mineralogy Montanuniversität Leoben Leoben 8700 AustriaChair of Physics Department Physics, Mechanics and Electrical Engineering Montanuniversität Leoben Leoben 8700 AustriaSemiconductor Physics Chemnitz University of Technology D‐09107 Chemnitz GermanySemiconductor Physics Chemnitz University of Technology D‐09107 Chemnitz GermanyChair of Physics Department Physics, Mechanics and Electrical Engineering Montanuniversität Leoben Leoben 8700 AustriaAbstract Magnetic monolayers show great promise for future applications in nanoelectronics, data storage, and sensing. The research in magnetic two‐dimensional (2D) materials focuses on synthetic iodides and tellurides, which suffer from a lack of ambient stability. So far, naturally occurring layered magnetic materials have been overlooked. These minerals offer a unique opportunity to explore complex air‐stable layered systems with high concentration of magnetic ions. Magnetic ordering in iron‐rich phyllosilicates is demonstrated, focusing on minnesotaite, annite, and biotite. These naturally occurring layered materials integrate local moment baring ions of iron via magnesium/aluminum substitution in their octahedral sites. Self‐inherent capping by silicate/aluminate tetrahedral groups enables air stability of ultra‐thin layers. Their structure and iron oxidation states are determined via Raman and X‐ray spectroscopies. Superconducting quantum interference device magnetometry measurements are performed to examine the magnetic ordering. Paramagnetic or superparamagnetic characteristics at room temperature are observed. Below 40 K ferrimagnetic or antiferromagnetic ordering occurs. In‐field magnetic force microscopy on exfoliated flakes confirms that the paramagnetic response at room temperature persists down to monolayers. Further, a correlation between the mixture of the oxidation states of iron and the critical ordering temperature is established, indicating a path to design materials with higher critical temperatures via oxidation state engineering.https://doi.org/10.1002/apxr.2023000702D magnetic insulatorsFe‐rich phyllosilicateslayered magnetic minerals
spellingShingle Muhammad Zubair Khan
Oleg E. Peil
Apoorva Sharma
Oleksandr Selyshchev
Sergio Valencia
Florian Kronast
Maik Zimmermann
Muhammad Awais Aslam
Johann G. Raith
Christian Teichert
Dietrich R. T. Zahn
Georgeta Salvan
Aleksandar Matković
Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals
Advanced Physics Research
2D magnetic insulators
Fe‐rich phyllosilicates
layered magnetic minerals
title Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals
title_full Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals
title_fullStr Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals
title_full_unstemmed Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals
title_short Probing Magnetic Ordering in Air Stable Iron‐Rich Van der Waals Minerals
title_sort probing magnetic ordering in air stable iron rich van der waals minerals
topic 2D magnetic insulators
Fe‐rich phyllosilicates
layered magnetic minerals
url https://doi.org/10.1002/apxr.202300070
work_keys_str_mv AT muhammadzubairkhan probingmagneticorderinginairstableironrichvanderwaalsminerals
AT olegepeil probingmagneticorderinginairstableironrichvanderwaalsminerals
AT apoorvasharma probingmagneticorderinginairstableironrichvanderwaalsminerals
AT oleksandrselyshchev probingmagneticorderinginairstableironrichvanderwaalsminerals
AT sergiovalencia probingmagneticorderinginairstableironrichvanderwaalsminerals
AT floriankronast probingmagneticorderinginairstableironrichvanderwaalsminerals
AT maikzimmermann probingmagneticorderinginairstableironrichvanderwaalsminerals
AT muhammadawaisaslam probingmagneticorderinginairstableironrichvanderwaalsminerals
AT johanngraith probingmagneticorderinginairstableironrichvanderwaalsminerals
AT christianteichert probingmagneticorderinginairstableironrichvanderwaalsminerals
AT dietrichrtzahn probingmagneticorderinginairstableironrichvanderwaalsminerals
AT georgetasalvan probingmagneticorderinginairstableironrichvanderwaalsminerals
AT aleksandarmatkovic probingmagneticorderinginairstableironrichvanderwaalsminerals