Passive Flow Control for Drag Reduction on a Cylinder in Cross-Flow Using Leeward Partial Porous Coatings

This paper presents a numerical study on the impact of partial leeward porous coatings on the drag of circular cylinders in cross-flow. Porous coatings are receiving increasing attention for their potential in passive flow control. An unsteady Reynolds-averaged Navier–Stokes model was developed that...

Full description

Bibliographic Details
Main Authors: Imogen Guinness, Tim Persoons
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/6/8/289
Description
Summary:This paper presents a numerical study on the impact of partial leeward porous coatings on the drag of circular cylinders in cross-flow. Porous coatings are receiving increasing attention for their potential in passive flow control. An unsteady Reynolds-averaged Navier–Stokes model was developed that agreed well with the numerical and experimental literature. Using the two-equation shear stress transport <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></semantics></math></inline-formula> turbulence model, 2D flow around a circular cylinder was simulated at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.2</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup></mrow></semantics></math></inline-formula> with five different angles of partial leeward porous coatings and a full porous coating. For coating angles below <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>130</mn><mo>∘</mo></msup></semantics></math></inline-formula>, the coating resulted in an increase in pressure on the leeward side of the cylinder. There was a significant reduction in the fluctuation of the pressure and aerodynamic forces and a damping effect on vortex shedding. Flow separation occurred earlier; the wake was widened; and there was a decrease in turbulence intensity at the outlet. A reduction of drag between 5 and 16% was measured, with the maximum at a 70<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula> coating angle. The results differed greatly for a full porous coating and a 160<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula> coating, which were found to cause an increase in drag of 42% and 43%, respectively. The results showed that leeward porous coatings have a clear drag-reducing potential, with possibilities for further research into the optimum configuration.
ISSN:2311-5521