Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology

In this study, the potential of Sentinel-1 data to seasonally monitor temperate forests was investigated by analyzing radar signatures observed from plots in the Fontainebleau Forest of the Ile de France region, France, for the period extending from March 2015 to January 2016. Radar backscattering c...

Full description

Bibliographic Details
Main Authors: Pierre-Louis Frison, Bénédicte Fruneau, Syrine Kmiha, Kamel Soudani, Eric Dufrêne, Thuy Le Toan, Thierry Koleck, Ludovic Villard, Eric Mougin, Jean-Paul Rudant
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/10/12/2049
_version_ 1828883351852810240
author Pierre-Louis Frison
Bénédicte Fruneau
Syrine Kmiha
Kamel Soudani
Eric Dufrêne
Thuy Le Toan
Thierry Koleck
Ludovic Villard
Eric Mougin
Jean-Paul Rudant
author_facet Pierre-Louis Frison
Bénédicte Fruneau
Syrine Kmiha
Kamel Soudani
Eric Dufrêne
Thuy Le Toan
Thierry Koleck
Ludovic Villard
Eric Mougin
Jean-Paul Rudant
author_sort Pierre-Louis Frison
collection DOAJ
description In this study, the potential of Sentinel-1 data to seasonally monitor temperate forests was investigated by analyzing radar signatures observed from plots in the Fontainebleau Forest of the Ile de France region, France, for the period extending from March 2015 to January 2016. Radar backscattering coefficients, <i>&#963;</i><sup>0</sup> and the amplitude of temporal interferometric coherence profiles in relation to environmental variables are shown, such as <i>in situ</i> precipitation and air temperature. The high temporal frequency of Sentinel-1 acquisitions (i.e., twelve days, or six, if both Sentinel-1A and B are combined over Europe) and the dual polarization configuration (VV and VH over most land surfaces) made a significant contribution. In particular, the radar backscattering coefficient ratio of VV to VH polarization, <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>&#963;</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> <mo>/</mo> <msubsup> <mi>&#963;</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, showed a well-pronounced seasonality that was correlated with vegetation phenology, as confirmed in comparison to NDVI profiles derived from Landsat-8 (<i>r</i> = 0.77) over stands of deciduous trees. These results illustrate the high potential of Sentinel-1 data for monitoring vegetation, and as these data are not sensitive to the atmosphere, the phenology could be estimated with more accuracy than optical data. These observations will be quantitatively analyzed with the use of electromagnetic models in the near future.
first_indexed 2024-12-13T10:46:55Z
format Article
id doaj.art-d88d0f66f71043a8bac6d66cdc238b66
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-12-13T10:46:55Z
publishDate 2018-12-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-d88d0f66f71043a8bac6d66cdc238b662022-12-21T23:50:06ZengMDPI AGRemote Sensing2072-42922018-12-011012204910.3390/rs10122049rs10122049Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest PhenologyPierre-Louis Frison0Bénédicte Fruneau1Syrine Kmiha2Kamel Soudani3Eric Dufrêne4Thuy Le Toan5Thierry Koleck6Ludovic Villard7Eric Mougin8Jean-Paul Rudant9LaSTIG/MATIS, Université Paris-Est, IGN, 5 Bd Descartes, Champs sur Marne, 77455 Marne la Vallée CEDEX 2, FranceLaSTIG/MATIS, Université Paris-Est, IGN, 5 Bd Descartes, Champs sur Marne, 77455 Marne la Vallée CEDEX 2, FranceLaSTIG/MATIS, Université Paris-Est, IGN, 5 Bd Descartes, Champs sur Marne, 77455 Marne la Vallée CEDEX 2, FranceEcologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91400 Orsay, FranceEcologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91400 Orsay, FranceCESBIO, UMR 5126, CNRS/CNES/UPS/IRD, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse CEDEX 9, FranceCESBIO, UMR 5126, CNRS/CNES/UPS/IRD, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse CEDEX 9, FranceCESBIO, UMR 5126, CNRS/CNES/UPS/IRD, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse CEDEX 9, FranceObservatoire Midi-Pyrénées—Géosciences Environnement Toulouse, UMR 5563, CNRS/IRD/UPS, 14 av. E. Belin, 31400 Toulouse, FranceLaSTIG/MATIS, Université Paris-Est, IGN, 5 Bd Descartes, Champs sur Marne, 77455 Marne la Vallée CEDEX 2, FranceIn this study, the potential of Sentinel-1 data to seasonally monitor temperate forests was investigated by analyzing radar signatures observed from plots in the Fontainebleau Forest of the Ile de France region, France, for the period extending from March 2015 to January 2016. Radar backscattering coefficients, <i>&#963;</i><sup>0</sup> and the amplitude of temporal interferometric coherence profiles in relation to environmental variables are shown, such as <i>in situ</i> precipitation and air temperature. The high temporal frequency of Sentinel-1 acquisitions (i.e., twelve days, or six, if both Sentinel-1A and B are combined over Europe) and the dual polarization configuration (VV and VH over most land surfaces) made a significant contribution. In particular, the radar backscattering coefficient ratio of VV to VH polarization, <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>&#963;</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> <mo>/</mo> <msubsup> <mi>&#963;</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics> </math> </inline-formula>, showed a well-pronounced seasonality that was correlated with vegetation phenology, as confirmed in comparison to NDVI profiles derived from Landsat-8 (<i>r</i> = 0.77) over stands of deciduous trees. These results illustrate the high potential of Sentinel-1 data for monitoring vegetation, and as these data are not sensitive to the atmosphere, the phenology could be estimated with more accuracy than optical data. These observations will be quantitatively analyzed with the use of electromagnetic models in the near future.https://www.mdpi.com/2072-4292/10/12/2049seasonal monitoringtemperate mixed forestSARSentinel-1radar backscattering coefficientinterferometric coherence
spellingShingle Pierre-Louis Frison
Bénédicte Fruneau
Syrine Kmiha
Kamel Soudani
Eric Dufrêne
Thuy Le Toan
Thierry Koleck
Ludovic Villard
Eric Mougin
Jean-Paul Rudant
Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
Remote Sensing
seasonal monitoring
temperate mixed forest
SAR
Sentinel-1
radar backscattering coefficient
interferometric coherence
title Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
title_full Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
title_fullStr Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
title_full_unstemmed Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
title_short Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
title_sort potential of sentinel 1 data for monitoring temperate mixed forest phenology
topic seasonal monitoring
temperate mixed forest
SAR
Sentinel-1
radar backscattering coefficient
interferometric coherence
url https://www.mdpi.com/2072-4292/10/12/2049
work_keys_str_mv AT pierrelouisfrison potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT benedictefruneau potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT syrinekmiha potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT kamelsoudani potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT ericdufrene potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT thuyletoan potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT thierrykoleck potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT ludovicvillard potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT ericmougin potentialofsentinel1dataformonitoringtemperatemixedforestphenology
AT jeanpaulrudant potentialofsentinel1dataformonitoringtemperatemixedforestphenology