Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics
The article presents the laser scattering and depolarisation instrument SIMONE that is installed at the large aerosol and cloud chamber facility AIDA of the Karlsruhe Institute of Technology. SIMONE uses a 488 nm cw laser to probe simulated atmospheric clouds by measuring the scattered light fro...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-11-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/12/10465/2012/acp-12-10465-2012.pdf |
_version_ | 1818298403439771648 |
---|---|
author | R. Wagner M. Vragel J. Skrotzki O. Möhler S. Büttner M. Schnaiter |
author_facet | R. Wagner M. Vragel J. Skrotzki O. Möhler S. Büttner M. Schnaiter |
author_sort | R. Wagner |
collection | DOAJ |
description | The article presents the laser scattering and depolarisation instrument SIMONE that is installed at the large aerosol and cloud chamber facility AIDA of the Karlsruhe Institute of Technology. SIMONE uses a 488 nm cw laser to probe simulated atmospheric clouds by measuring the scattered light from the 1.8° and 178.2° directions. At 178.2°, the scattered light is analysed for the linear polarisation state to deduce the particle linear depolarisation ratio δ<sub>p</sub> which is a common measurement parameter of atmospheric lidar applications. The optical setup and the mathematical formalism of the depolarisation detection concept are given. SIMONE depolarisation measurements in spheroidal hematite aerosol and supercooled liquid clouds are used to validate the instrument. <br><br> SIMONE data from a series of AIDA ice nucleation experiments at temperatures between 195 and 225 K were analysed in terms of the impact of the ice particle microphysics on δ<sub>p</sub>. We found strong depolarisation values of up to 0.4 in case of small growing and sublimating ice particles with volume equivalent diameters of only a few micrometers. <br><br> Modelling runs with the T-matrix method showed that the measured depolarisation ratios can be accurately reproduced assuming spheroidal and cylindrical particles with a size distribution that has been constrained by IR extinction spectroscopy. Based on the T-matrix modelling runs, we demonstrate that in case of small ice crystals the SIMONE depolarisation results are representative for the lidar depolarisation ratio which is measured at exact backscattering direction of 180°. <br><br> The relevance of our results for the interpretation of recent lidar observations in cirrus and contrails is discussed. In view of our results, the high depolarisation ratios observed by the spaceborne lidar CALIOP in the tropical upper troposphere might be a hint for the presence of small (sublimating) ice particles in the outflows of deep convective systems. |
first_indexed | 2024-12-13T04:34:46Z |
format | Article |
id | doaj.art-d8917ca2272e4a36be4bcbdfe668ab08 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-13T04:34:46Z |
publishDate | 2012-11-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-d8917ca2272e4a36be4bcbdfe668ab082022-12-21T23:59:28ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-11-011221104651048410.5194/acp-12-10465-2012Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysicsR. WagnerM. VragelJ. SkrotzkiO. MöhlerS. BüttnerM. SchnaiterThe article presents the laser scattering and depolarisation instrument SIMONE that is installed at the large aerosol and cloud chamber facility AIDA of the Karlsruhe Institute of Technology. SIMONE uses a 488 nm cw laser to probe simulated atmospheric clouds by measuring the scattered light from the 1.8° and 178.2° directions. At 178.2°, the scattered light is analysed for the linear polarisation state to deduce the particle linear depolarisation ratio δ<sub>p</sub> which is a common measurement parameter of atmospheric lidar applications. The optical setup and the mathematical formalism of the depolarisation detection concept are given. SIMONE depolarisation measurements in spheroidal hematite aerosol and supercooled liquid clouds are used to validate the instrument. <br><br> SIMONE data from a series of AIDA ice nucleation experiments at temperatures between 195 and 225 K were analysed in terms of the impact of the ice particle microphysics on δ<sub>p</sub>. We found strong depolarisation values of up to 0.4 in case of small growing and sublimating ice particles with volume equivalent diameters of only a few micrometers. <br><br> Modelling runs with the T-matrix method showed that the measured depolarisation ratios can be accurately reproduced assuming spheroidal and cylindrical particles with a size distribution that has been constrained by IR extinction spectroscopy. Based on the T-matrix modelling runs, we demonstrate that in case of small ice crystals the SIMONE depolarisation results are representative for the lidar depolarisation ratio which is measured at exact backscattering direction of 180°. <br><br> The relevance of our results for the interpretation of recent lidar observations in cirrus and contrails is discussed. In view of our results, the high depolarisation ratios observed by the spaceborne lidar CALIOP in the tropical upper troposphere might be a hint for the presence of small (sublimating) ice particles in the outflows of deep convective systems.http://www.atmos-chem-phys.net/12/10465/2012/acp-12-10465-2012.pdf |
spellingShingle | R. Wagner M. Vragel J. Skrotzki O. Möhler S. Büttner M. Schnaiter Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics Atmospheric Chemistry and Physics |
title | Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics |
title_full | Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics |
title_fullStr | Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics |
title_full_unstemmed | Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics |
title_short | Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals – cloud chamber measurements in the context of contrail and cirrus microphysics |
title_sort | influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals ndash cloud chamber measurements in the context of contrail and cirrus microphysics |
url | http://www.atmos-chem-phys.net/12/10465/2012/acp-12-10465-2012.pdf |
work_keys_str_mv | AT rwagner influenceofparticlesizeandshapeonthebackscatteringlineardepolarisationratioofsmallicecrystalsndashcloudchambermeasurementsinthecontextofcontrailandcirrusmicrophysics AT mvragel influenceofparticlesizeandshapeonthebackscatteringlineardepolarisationratioofsmallicecrystalsndashcloudchambermeasurementsinthecontextofcontrailandcirrusmicrophysics AT jskrotzki influenceofparticlesizeandshapeonthebackscatteringlineardepolarisationratioofsmallicecrystalsndashcloudchambermeasurementsinthecontextofcontrailandcirrusmicrophysics AT omohler influenceofparticlesizeandshapeonthebackscatteringlineardepolarisationratioofsmallicecrystalsndashcloudchambermeasurementsinthecontextofcontrailandcirrusmicrophysics AT sbuttner influenceofparticlesizeandshapeonthebackscatteringlineardepolarisationratioofsmallicecrystalsndashcloudchambermeasurementsinthecontextofcontrailandcirrusmicrophysics AT mschnaiter influenceofparticlesizeandshapeonthebackscatteringlineardepolarisationratioofsmallicecrystalsndashcloudchambermeasurementsinthecontextofcontrailandcirrusmicrophysics |