Botanical inhibitors of SARS-CoV-2 viral entry: a phylogenetic perspective

Abstract Throughout the SARS-CoV-2 pandemic, the use of botanical dietary supplements in the United States has increased, yet their safety and efficacy against COVID-19 remains underexplored. The Quave Natural Product Library is a phylogenetically diverse collection of botanical and fungal natural p...

Full description

Bibliographic Details
Main Authors: Caitlin J. Risener, Sunmin Woo, Tharanga Samarakoon, Marco Caputo, Emily Edwards, Kier Klepzig, Wendy Applequist, Keivan Zandi, Shu Ling Goh, Jessica A. Downs-Bowen, Raymond F. Schinazi, Cassandra L. Quave
Format: Article
Language:English
Published: Nature Portfolio 2023-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-28303-x
Description
Summary:Abstract Throughout the SARS-CoV-2 pandemic, the use of botanical dietary supplements in the United States has increased, yet their safety and efficacy against COVID-19 remains underexplored. The Quave Natural Product Library is a phylogenetically diverse collection of botanical and fungal natural product extracts including popular supplement ingredients. Evaluation of 1867 extracts and 18 compounds for virus spike protein binding to host cell ACE2 receptors in a SARS-CoV-2 pseudotyped virus system identified 310 extracts derived from 188 species across 76 families (3 fungi, 73 plants) that exhibited ≥ 50% viral entry inhibition activity at 20 µg/mL. Extracts exhibiting mammalian cytotoxicity > 15% and those containing cardiotoxic cardiac glycosides were eliminated. Three extracts were selected for further testing against four pseudotyped variants and infectious SARS-CoV-2 and were then further chemically characterized, revealing the potent (EC50 < 5 µg/mL) antiviral activity of Solidago altissima L. (Asteraceae) flowers and Pteridium aquilinum (L.) Kuhn (Dennstaedtiaceae) rhizomes.
ISSN:2045-2322