Summary: | The efficiency of photosynthesis in strawberry plants is measured to maintain the quality and quantity of strawberries produced. The latest method used to measure the photosynthetic status of plants is chlorophyll fluorescence imaging (CFI), which has the advantage of obtaining plant spatiotemporal data non-destructively. This study developed a CFI system to measure the maximum quantum efficiency of photochemistry (Fv/Fm). The main components of this system include a chamber for plants to adapt to dark environments, blue LED light sources to excite the chlorophyll in plants, and a monochrome camera with a lens filter attached to capture the emission spectra. In this study, 120 pots of strawberry plants were cultivated for 15 days and divided into four treatment groups: control, drought stress, heat stress, and a combination of drought and heat stress, resulting in Fv/Fm values of 0.802 ± 0.0036, 0.780 ± 0.0026, 0.768 ± 0.0023, and 0.749 ± 0.0099, respectively. A strong correlation was found between the developed system and a chlorophyll meter (r = 0.75). These results prove that the developed CFI system can accurately capture the spatial and temporal dynamics resulting from the response of strawberry plants to abiotic stresses.
|