A New Family of Continuous Probability Distributions

In this paper, a new parametric compound G family of continuous probability distributions called the Poisson generalized exponential G (PGEG) family is derived and studied. Relevant mathematical properties are derived. Some new bivariate G families using the theorems of “Farlie-Gumbel-Morgenstern co...

Full description

Bibliographic Details
Main Authors: M. El-Morshedy, Fahad Sameer Alshammari, Yasser S. Hamed, Mohammed S. Eliwa, Haitham M. Yousof
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/2/194
Description
Summary:In this paper, a new parametric compound G family of continuous probability distributions called the Poisson generalized exponential G (PGEG) family is derived and studied. Relevant mathematical properties are derived. Some new bivariate G families using the theorems of “Farlie-Gumbel-Morgenstern copula”, “the modified Farlie-Gumbel-Morgenstern copula”, “the Clayton copula”, and “the Renyi’s entropy copula” are presented. Many special members are derived, and a special attention is devoted to the exponential and the one parameter Pareto type II model. The maximum likelihood method is used to estimate the model parameters. A graphical simulation is performed to assess the finite sample behavior of the estimators of the maximum likelihood method. Two real-life data applications are proposed to illustrate the importance of the new family.
ISSN:1099-4300