VIUNet: Deep Visual–Inertial–UWB Fusion for Indoor UAV Localization

Camera, inertial measurement unit (IMU), and ultra-wideband (UWB) sensors are commonplace solutions to unmanned aerial vehicle (UAV) localization problems. The performance of a localization system can be improved by integrating observations from different sensors. In this paper, we propose a learnin...

Full description

Bibliographic Details
Main Authors: Peng-Yuan Kao, Hsiu-Jui Chang, Kuan-Wei Tseng, Timothy Chen, He-Lin Luo, Yi-Ping Hung
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10131904/
_version_ 1797796561180164096
author Peng-Yuan Kao
Hsiu-Jui Chang
Kuan-Wei Tseng
Timothy Chen
He-Lin Luo
Yi-Ping Hung
author_facet Peng-Yuan Kao
Hsiu-Jui Chang
Kuan-Wei Tseng
Timothy Chen
He-Lin Luo
Yi-Ping Hung
author_sort Peng-Yuan Kao
collection DOAJ
description Camera, inertial measurement unit (IMU), and ultra-wideband (UWB) sensors are commonplace solutions to unmanned aerial vehicle (UAV) localization problems. The performance of a localization system can be improved by integrating observations from different sensors. In this paper, we propose a learning-based UAV localization method using the fusion of vision, IMU, and UWB sensors. Our model consists of visual&#x2013;inertial (VI) and UWB branches. We combine the estimation results of both branches to predict global poses. To evaluate our method, we augment a public VI dataset with UWB simulations and conduct a real-world experiment. The experimental results show that our method provides more robust and accurate results than VI/UWB-only localization. Our codes and data are available at <uri>https://imlabntu.github.io/VIUNet/</uri>.
first_indexed 2024-03-13T03:34:52Z
format Article
id doaj.art-d8b91e1a44ed423cb0be5f28ec1a762a
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-13T03:34:52Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-d8b91e1a44ed423cb0be5f28ec1a762a2023-06-23T23:00:30ZengIEEEIEEE Access2169-35362023-01-0111615256153410.1109/ACCESS.2023.327929210131904VIUNet: Deep Visual&#x2013;Inertial&#x2013;UWB Fusion for Indoor UAV LocalizationPeng-Yuan Kao0https://orcid.org/0000-0002-5582-1039Hsiu-Jui Chang1Kuan-Wei Tseng2https://orcid.org/0000-0003-1134-5314Timothy Chen3https://orcid.org/0000-0001-7900-890XHe-Lin Luo4https://orcid.org/0000-0001-9788-3863Yi-Ping Hung5https://orcid.org/0009-0007-3792-9509Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, TaiwanDepartment of Computer Science and Information Engineering, National Taiwan University, Taipei, TaiwanDepartment of Computer Science, Tokyo Institute of Technology, Tokyo, JapanDepartment of Computer Science and Information Engineering, National Taiwan University, Taipei, TaiwanGraduate Institute of Animation and Film Art, Tainan National University of the Arts, Tainan, TaiwanGraduate Institute of Networking and Multimedia, National Taiwan University, Taipei, TaiwanCamera, inertial measurement unit (IMU), and ultra-wideband (UWB) sensors are commonplace solutions to unmanned aerial vehicle (UAV) localization problems. The performance of a localization system can be improved by integrating observations from different sensors. In this paper, we propose a learning-based UAV localization method using the fusion of vision, IMU, and UWB sensors. Our model consists of visual&#x2013;inertial (VI) and UWB branches. We combine the estimation results of both branches to predict global poses. To evaluate our method, we augment a public VI dataset with UWB simulations and conduct a real-world experiment. The experimental results show that our method provides more robust and accurate results than VI/UWB-only localization. Our codes and data are available at <uri>https://imlabntu.github.io/VIUNet/</uri>.https://ieeexplore.ieee.org/document/10131904/Visual-inertial odometryultra-widebandsensor fusiondeep learning
spellingShingle Peng-Yuan Kao
Hsiu-Jui Chang
Kuan-Wei Tseng
Timothy Chen
He-Lin Luo
Yi-Ping Hung
VIUNet: Deep Visual&#x2013;Inertial&#x2013;UWB Fusion for Indoor UAV Localization
IEEE Access
Visual-inertial odometry
ultra-wideband
sensor fusion
deep learning
title VIUNet: Deep Visual&#x2013;Inertial&#x2013;UWB Fusion for Indoor UAV Localization
title_full VIUNet: Deep Visual&#x2013;Inertial&#x2013;UWB Fusion for Indoor UAV Localization
title_fullStr VIUNet: Deep Visual&#x2013;Inertial&#x2013;UWB Fusion for Indoor UAV Localization
title_full_unstemmed VIUNet: Deep Visual&#x2013;Inertial&#x2013;UWB Fusion for Indoor UAV Localization
title_short VIUNet: Deep Visual&#x2013;Inertial&#x2013;UWB Fusion for Indoor UAV Localization
title_sort viunet deep visual x2013 inertial x2013 uwb fusion for indoor uav localization
topic Visual-inertial odometry
ultra-wideband
sensor fusion
deep learning
url https://ieeexplore.ieee.org/document/10131904/
work_keys_str_mv AT pengyuankao viunetdeepvisualx2013inertialx2013uwbfusionforindooruavlocalization
AT hsiujuichang viunetdeepvisualx2013inertialx2013uwbfusionforindooruavlocalization
AT kuanweitseng viunetdeepvisualx2013inertialx2013uwbfusionforindooruavlocalization
AT timothychen viunetdeepvisualx2013inertialx2013uwbfusionforindooruavlocalization
AT helinluo viunetdeepvisualx2013inertialx2013uwbfusionforindooruavlocalization
AT yipinghung viunetdeepvisualx2013inertialx2013uwbfusionforindooruavlocalization