Lagrange Anchor and Characteristic Symmetries of Free Massless Fields

A Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s>1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perfo...

Full description

Bibliographic Details
Main Authors: Dmitry S. Kaparulin, Simon L. Lyakhovich, Alexey A. Sharapov
Format: Article
Language:English
Published: National Academy of Science of Ukraine 2012-04-01
Series:Symmetry, Integrability and Geometry: Methods and Applications
Subjects:
Online Access:http://dx.doi.org/10.3842/SIGMA.2012.021
_version_ 1819264752550936576
author Dmitry S. Kaparulin
Simon L. Lyakhovich
Alexey A. Sharapov
author_facet Dmitry S. Kaparulin
Simon L. Lyakhovich
Alexey A. Sharapov
author_sort Dmitry S. Kaparulin
collection DOAJ
description A Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s>1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perform the path-integral quantization of the theory.
first_indexed 2024-12-23T20:34:29Z
format Article
id doaj.art-d8da5ebe37c346f08b8f69a5df6ec1a4
institution Directory Open Access Journal
issn 1815-0659
language English
last_indexed 2024-12-23T20:34:29Z
publishDate 2012-04-01
publisher National Academy of Science of Ukraine
record_format Article
series Symmetry, Integrability and Geometry: Methods and Applications
spelling doaj.art-d8da5ebe37c346f08b8f69a5df6ec1a42022-12-21T17:32:08ZengNational Academy of Science of UkraineSymmetry, Integrability and Geometry: Methods and Applications1815-06592012-04-018021Lagrange Anchor and Characteristic Symmetries of Free Massless FieldsDmitry S. KaparulinSimon L. LyakhovichAlexey A. SharapovA Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s>1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perform the path-integral quantization of the theory.http://dx.doi.org/10.3842/SIGMA.2012.021symmetriesconservation lawsBargmann-Wigner equationsLagrange anchor
spellingShingle Dmitry S. Kaparulin
Simon L. Lyakhovich
Alexey A. Sharapov
Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
Symmetry, Integrability and Geometry: Methods and Applications
symmetries
conservation laws
Bargmann-Wigner equations
Lagrange anchor
title Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_full Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_fullStr Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_full_unstemmed Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_short Lagrange Anchor and Characteristic Symmetries of Free Massless Fields
title_sort lagrange anchor and characteristic symmetries of free massless fields
topic symmetries
conservation laws
Bargmann-Wigner equations
Lagrange anchor
url http://dx.doi.org/10.3842/SIGMA.2012.021
work_keys_str_mv AT dmitryskaparulin lagrangeanchorandcharacteristicsymmetriesoffreemasslessfields
AT simonllyakhovich lagrangeanchorandcharacteristicsymmetriesoffreemasslessfields
AT alexeyasharapov lagrangeanchorandcharacteristicsymmetriesoffreemasslessfields