COMPACT STRUCTURE REPRESENTATION IN DISCOVERING FREQUENT PATTERNS FOR ASSOCIATION RULES
Frequent pattern mining is a key problem in important data mining applications, such as the discovery of association rules, strong rules and episodes. Structure used in typical algorithms for solving this problem operate in several database scans and a large number of candidate generation. This pap...
Huvudupphovsmän: | Norwati Mustapha, M. Nasir Sulaiman, M. Othman, M. Hassan Selamat |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
UUM Press
2022-11-01
|
Serie: | Journal of ICT |
Ämnen: | |
Länkar: | https://e-journal.uum.edu.my/index.php/jict/article/view/18114 |
Liknande verk
Liknande verk
-
WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree for Discovering Rare and Frequent Itemset Using Parallel Technique
av: Shwetha Rai, et al.
Publicerad: (2024-01-01) -
Right-Hand Side Expanding Algorithm for Maximal Frequent Itemset Mining
av: Yalong Zhang, et al.
Publicerad: (2021-11-01) -
Incremental Closed Frequent Itemsets Mining-Based Approach Using Maximal Candidates
av: Mohammed A. Al-Zeiadi, et al.
Publicerad: (2025-01-01) -
Efficiently mining association rules based on maximum single constraints
av: Anh Tran, et al.
Publicerad: (2017-05-01) -
Multi-Objective Optimization for High-Dimensional Maximal Frequent Itemset Mining
av: Yalong Zhang, et al.
Publicerad: (2021-09-01)